scholarly journals First in-orbit results of the vector magnetic field measurement of the High Precision Magnetometer onboard the China Seismo-Electromagnetic Satellite

2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Bin Zhou ◽  
Bingjun Cheng ◽  
Xiaochen Gou ◽  
Lei Li ◽  
Yiteng Zhang ◽  
...  

Abstract The High Precision Magnetometer (HPM) is one of the main payloads onboard the China Seismo-Electromagnetic Satellite (CSES). The HPM consists of two Fluxgate Magnetometers (FGM) and the Coupled Dark State Magnetometer (CDSM), and measures the magnetic field from DC to 15 Hz. The FGMs measure the vector components of the magnetic field; while the CDSM detects the magnitude of the magnetic field with higher accuracy, which can be used to calibrate the linear parameters of the FGM. In this paper, brief descriptions of measurement principles and performances of the HPM, ground, and in-orbit calibration results of the FGMs are presented, including the thermal drift and magnetic interferences from the satellite. The HPM in-orbit vector data calibration includes two steps: sensor non-linearity corrections based on on-ground calibration and fluxgate linear parameter calibration based on the CDSM measurements. The calibration results show a reasonably good stability of the linear parameters over time. The difference between the field magnitude calculated from the calibrated FGM components and the magnitude directly measured by the CDSM is just 0.5 nT (1σ) when the linear parameters are fitted separately for the day- and the night-side. Satellite disturbances have been analyzed including soft and hard remanence as well as magnetization of the magnetic torquer, radiation from the Tri-Band Beacon, and interferences from the rotation of the solar wing. A comparison shows consistency between the HPM and SWARM magnetic field data. Observation examples are introduced in the paper, which show that HPM data can be used to survey the global geomagnetic field and monitor the magnetic field disturbances in the ionosphere.

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
S. Toepfer ◽  
Y. Narita ◽  
W. Exner ◽  
D. Heyner ◽  
P. Kolhey ◽  
...  

AbstractPoloidal–toroidal magnetic field decomposition is a useful application of the Mie representation and the decomposition method enables us to determine the current density observationally and unambiguously in the local region of magnetic field measurement. The application and the limits of the decomposition method are tested against the Mercury magnetic field simulation in view of BepiColombo’s arrival at Mercury in 2025. The simulated magnetic field data are evaluated along the planned Mercury Planetary Orbiter (MPO) trajectories and the current system that is crossed by the spacecraft is extracted from the magnetic field measurements. Afterwards, the resulting currents are classified in terms of the established current system in the vicinity of Mercury. Graphical Abstract


1945 ◽  
Vol 18 (1) ◽  
pp. 8-9 ◽  
Author(s):  
Eugénie Cotton-Feytis

Abstract From the standpoint of its magnetic anisotropy, stretched rubber is comparable in a first approximation to a uniaxial crystal, in which the direction of the axis is the same as the direction of elongation. It is possible to measure this anisotropy by means of the oscillation method used by Krishnan, Guha and Banerjee in studying crystals. The sample to be examined is suspended in a uniform horizontal magnetic field in such a manner that its axis is horizontal. It is then so arranged that the torsion of the suspension wire is zero when the rubber sample is in a position of equilibrium in the field. The times of oscillation T′ and T for very small angular displacements around this position, in the presence and then in the absence of the magnetic field, are then recorded. In this way the difference between the specific susceptibilities in the direction of the axis and in the horizontal direction perpendicular to the axis is calculated by application of the equation:


2016 ◽  
Vol 62 (11) ◽  
pp. 944-952 ◽  
Author(s):  
Lotfi Mhamdi ◽  
Nejib Mhamdi ◽  
Naceur Mhamdi ◽  
Philippe Lejeune ◽  
Nicole Jaffrezic ◽  
...  

This preliminary study focused on the effect of exposure to 0.5 T static magnetic fields on Escherichia coli adhesion and orientation. We investigated the difference in bacterial adhesion on the surface of glass and indium tin oxide-coated glass when exposed to a magnetic field either perpendicular or parallel to the adhesion surface (vectors of magnetic induction are perpendicular or parallel to the adhesion surface, respectively). Control cultures were simultaneously grown under identical conditions but without exposure to the magnetic field. We observed a decrease in cell adhesion after exposure to the magnetic field. Orientation of bacteria cells was affected after exposure to a parallel magnetic field. On the other hand, no effect on the orientation of bacteria cells was observed after exposure to a perpendicular magnetic field.


Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1489-1494 ◽  
Author(s):  
Richard S. Smith ◽  
A. Peter Annan

The traditional sensor used in transient electromagnetic (EM) systems is an induction coil. This sensor measures a voltage response proportional to the time rate of change of the magnetic field in the EM bandwidth. By simply integrating the digitized output voltage from the induction coil, it is possible to obtain an indirect measurement of the magnetic field in the same bandwidth. The simple integration methodology is validated by showing that there is good agreement between synthetic voltage data integrated to a magnetic field and synthetic magnetic‐field data calculated directly. Further experimental work compares induction‐coil magnetic‐field data collected along a profile with data measured using a SQUID magnetometer. These two electromagnetic profiles look similar, and a comparison of the decay curves at a critical point on the profile shows that the two types of measurements agree within the bounds of experimental error. Comparison of measured voltage and magnetic‐field data show that the two sets of profiles have quite different characteristics. The magnetic‐field data is better for identifying, discriminating, and interpreting good conductors, while suppressing the less conductive targets. An induction coil is therefore a suitable sensor for the indirect collection of EM magnetic‐field data.


2020 ◽  
Author(s):  
Ovidiu Dragoş Constantinescu ◽  
Hans-Ulrich Auster ◽  
Magda Delva ◽  
Olaf Hillenmaier ◽  
Werner Magnes ◽  
...  

Abstract. In situ measurement of the magnetic field using space borne instruments requires either a magnetically clean platform and/or a very long boom for accommodating magnetometer sensors at a large distance from the spacecraft body. This significantly drives up the costs and time required to build a spacecraft. Here we present an alternative sensor configuration and an algorithm allowing for ulterior removal of the spacecraft generated disturbances from the magnetic field measurements, thus lessening the need for a magnetic cleanliness program and allowing for shorter boom length. The proposed algorithm is applied to the Service Oriented Spacecraft Magnetometer (SOSMAG) onboard the Korean geostationary satellite GeoKompsat-2A (GK2A) which uses for the first time a multi-sensor configuration for onboard data cleaning. The successful elimination of disturbances originating from several sources validates the proposed cleaning technique.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 630
Author(s):  
Tomasz Chady ◽  
Ryszard D. Łukaszuk ◽  
Krzysztof Gorący ◽  
Marek J. Żwir

This paper proposes and experimentally investigates a novel nondestructive testing method for ferromagnetic elements monitoring, the Magnetic Recording Method (MRM). In this method, the inspected element must be magnetized in a strictly defined manner before operation. This can be achieved using an array of permanent magnets arranged to produce a quasi-sinusoidal magnetization path. The magnetic field caused by the original residual magnetization of the element is measured and stored for future reference. After the operation or loading, the magnetic field measurement is repeated. Analysis of relative changes in the magnetic field (for selected components) allows identifying applied stress. The proposed research methodology aims to provide information on the steel structure condition unambiguously and accurately. An interpretation of the results without referring to the original magnetization is also possible but could be less accurate. The method can be used as a standard technique for NDT (Non-Destructive Testing) or in structural health monitoring (SHM) systems.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 330 ◽  
Author(s):  
Nak Ko ◽  
Seokki Jeong ◽  
Suk-seung Hwang ◽  
Jae-Young Pyun

This paper proposes a method of estimating the attitude of an underwater vehicle. The proposed method uses two field measurements, namely, a gravitational field and a magnetic field represented in terms of vectors in three-dimensional space. In many existing methods that convert the measured field vectors into Euler angles, the yaw accuracy is affected by the uncertainty of the gravitational measurement and by the uncertainty of the magnetic field measurement. Additionally, previous methods have used the magnetic field measurement under the assumption that the magnetic field has only a horizontal component. The proposed method utilizes all field measurement components as they are, without converting them into Euler angles. The bias in the measured magnetic field vector is estimated and compensated to take full advantage of all measured field vector components. Because the proposed method deals with the measured field independently, uncertainties in the measured vectors affect the attitude estimation separately without adding up. The proposed method was tested by conducting navigation experiments with an unmanned underwater vehicle inside test tanks. The results were compared with those obtained by other methods, wherein the Euler angles converted from the measured field vectors were used as measurements.


1974 ◽  
Vol 60 ◽  
pp. 275-292 ◽  
Author(s):  
R. D. Davies

Observations of Class I OH maser sources show a range of features which are predicted on the basis of Zeeman splitting in a source magnetic field. Magnetic field strengths of 2 to 7 mG are derived for eight OH maser sources. The fields in all the clouds are directed in the sense of galactic rotation. A model of W3 OH is proposed which incorporates the magnetic field data. It is shown that no large amount of magnetic flux or angular momentum has been lost since the condensation from the interstellar medium began.


1909 ◽  
Vol 29 ◽  
pp. 75-83 ◽  
Author(s):  
Robert Jack

It has been mentioned by Professor Voigt of Göttingen in his newly published book and by Professor Zeeman of Amsterdam in the Physikalische Zeitschrift, that I have found examples of strongly marked dissymmetry in studying the Zeeman Effect in tungsten and molybdenum. Professor Zeeman has also discovered and published such cases of dissymmetry in other elements. Not only have many examples of normal dissymmetry been found, but almost as many cases of abnormal dissymmetry. To explain those terms, normal and abnormal, let us consider that the single spectrum line is broken up, when the light is in the magnetic field, into the three components, 1, 2, 3, where the numbers begin from the component which has the shortest wave-length. In the normal dissymmetrical triplet the middle component is nearer the component on the red side than that on the violet one, i.e. for the normal type the interval 1–2 is greater than the interval 2–3, but in the abnormal dissymmetrical triplet 2 is nearer to 1 than to 3. These observations of Professor Zeeman and myself, which were made at the same time in the Universities of Amsterdam and Göttingen, having been communicated to Professor Voigt, he wrote and published in the above-mentioned book an extension to his and Professor H. A. Lorentz's theories of the Zeeman Effect. In his original theory Professor Voigt had shown that, considering the electrons as uncoupled, cases of normal dissymmetry might arise among the Zeeman triplets, this dissymmetry being accompanied by a greater intensity of the red component than the violet one. He pointed out also that the ‘absolute’ dissymmetry or the difference between the absolute displacements of the red and violet components should be independent of the magnetic field strength used to produce the Zeeman Effect. To explain the large numbers of complicated types of Zeeman Effect which have been found —in the study of the Zeeman Effect in tungsten I discovered lines with no fewer than 17 to 19 components, the largest numbers hitherto found—Professors Voigt and Lorentz made use in their theories of couplings between electrons of the same vibration frequencies.


Sign in / Sign up

Export Citation Format

Share Document