Imaging the near surface using velocity inversions of ultra-high-density 3D seismic data

2021 ◽  
Vol 40 (8) ◽  
pp. 584-589
Author(s):  
Tim Dean ◽  
Margarita Pavlova ◽  
Matthew Grant ◽  
Martin Bayly ◽  
Denis Sweeney ◽  
...  

Within the coal industry, there is a rich history of the use of the surface seismic method, principally for exploration and employing sparse 2D lines for broad resource delineation and structural modeling. However, the acquisition of 3D seismic surveys adjacent to open-cut mines (from which the majority of coal is extracted) for superior resource definition ahead of their expansion has been explored only recently. Although the reflection results are extremely useful and enable the mapping of faults with sub-5 m throws, there is still interest in determining if the seismic data can be used to image both structures and rock properties in the near surface. In addition to mapping near-surface structures that have geotechnical implications, the ability to map the overburden properties (which can be quite heterogeneous) is desired. Before mining activities can take place, the overburden needs to be removed. The cost of the removal method employed is directly affected by the depth of the weathered layer and rock properties. In particular, hardness can vary significantly. In this paper, we demonstrate how high-density seismic data originally acquired for reflection processing can be processed to generate high-resolution velocity (both VS and VP) depth volumes, which enable the successful identification of shallow structures and the creation of highly detailed near-surface rock-property volumes.

Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 66
Author(s):  
Mateusz Zaręba ◽  
Tomasz Danek ◽  
Jerzy Zając

Obtaining the most accurate and detailed subsurface information from seismic surveys is one of the main challenges for seismic data processing, especially in the context of complex geological conditions (e.g., mountainous areas). The correct calculation of static corrections allows for the reliable processing of seismic data. This, in turn, leads to better geological interpretation. A seismic signal passing through a near-surface zone (NSZ) is adversely affected by the high heterogeneity of this zone. As a result of this, observed travel times often show anisotropy. The application of refractive waves and the time delay solution without taking into account the effects caused by the complex anisotropy of an NSZ does not meet the standards of modern seismic surveys. The construction of the NSZ model in mountain regions with the use of refraction may be extremely difficult, as the vertical layers can be observed very close to the surface. It is not sufficient to apply regular isotropic refractive solutions in such conditions. The presented studies show the results of taking into account the anisotropy of an NSZ in the calculations of static corrections. The presented results show that this step is critical for the detailed processing of three-dimensional (3D) seismic data collected in the difficult region of the Carpathians in Southern Poland.


1989 ◽  
Vol 20 (2) ◽  
pp. 229
Author(s):  
S.C. Stewart ◽  
B.J. Evans

As part of an industry funded research project into the application of the technique of LOFOLD3D land seismic surveying, a four fold three dimensional seismic survey was performed in the Perth Basin at Moora, Western Australia in July 1987. The volume covered an area of four kilometres by just under two kilometres, producing a total of 23,000 common midpoint traces. The objective was to collect and process the data in such a manner that a three dimensional structural interpretation would result, which would be the same as that resulting from a conventional three dimensional survey. A cost comparison indicates that a commercial LOFOLD3D survey would reduce the cost of performing a land 3D survey to an estimated 20% of the full fold equivalent, and the technique therefore offers potential for substantial savings if it is adopted on a commercial basis.


Geophysics ◽  
1991 ◽  
Vol 56 (6) ◽  
pp. 859-862 ◽  
Author(s):  
Robert R. Stewart

Multicomponent seismic recordings are currently being analyzed in an attempt to improve conventional P‐wave sections and to find and use rock properties associated with shear waves (e.g. Dohr, 1985; Danbom and Dominico, 1986). Mode‐converted (P-SV) waves hold a special interest for several reasons: They are generated by conventional P‐wave sources and have only a one‐way travel path as a shear wave through the typically low velocity and attenuative near surface. For a given frequency, they will have a shorter wavelength than the original P wave, and thus offer higher spatial resolution; this has been observed in several vertical seismic profiling (VSP) cases (e.g., Geis et al., 1990). However, for surface seismic data, converted waves are often found to be of lower frequency than P-P waves (e.g., Eaton et al., 1991).


2015 ◽  
Vol 55 (2) ◽  
pp. 492
Author(s):  
Howard Ewan ◽  
Frances Cullen

Since peaking at more than 200 MMbbl in 2000, offshore oil production in Australia has declined steadily by falling to below 100 MMbbl in 2011. Various initiatives and policies have been introduced by the Australian Government to encourage exploration of frontier basins to find a new oil province that may stop this production decline. By analysing the exploration and production profiles of established petroleum provinces in offshore Australia, the reasons behind similarities, differences and trends can be understood. This knowledge can be applied to future exploration efforts and provides a variety of possible outcomes should success come in immature and frontier provinces. Analysis of data mainly from the Bonaparte, Browse, Gippsland, North Carnarvon and, to a lesser extent, the Otway and Perth basins, shows that early success typifies these petroleum provinces. The degree of early success is, however, not always a good indication of later exploration results. While the creaming curves of some basins conform to the hypothetical basin creaming curve, characterised by large initial reserves increases and falling discovery size across time, it is evident that this cannot be universally applied. Considerable success much later in the exploration history of a basin is demonstrated, by success driven policy implementation, exploration incentivisation and increases in data acquisition. In this extended abstract, the importance of using advances in technology is demonstrated by reserves additions following the opening up of deepwater areas and the increased use of high-density 2D seismic and 3D seismic data. This information supports the notion that frontier areas may hold the key to alleviating dependence on foreign supply, success in immature basins is still possible and should not be overlooked.


2019 ◽  
Vol 38 (8) ◽  
pp. 597-603
Author(s):  
Yong Fang ◽  
Wenshan Luo ◽  
Xiaoxia Luo ◽  
Xukui Feng ◽  
Bo Zhao ◽  
...  

Due to complicated near-surface conditions, including large elevation changes and complex geologic structures, accurate imaging of subsurface structures for hydrocarbon exploration in the foreland basins of western China has been challenging for many years. After decades of research and fieldwork, we developed an effective seismic exploration workflow that uses the latest technologies from acquisition to imaging. They include 3D high-density and wide-azimuth (WAZ) acquisition, 3D true-surface tilted transverse isotropy (TTI) anisotropic prestack depth migration, and dual-detachment structural modeling and interpretation. To further reduce uncertainty in velocity model building and improve imaging quality, our geologists, geophysicists, and reservoir engineers worked closely through the exploration cycle (seismic acquisition, processing, and interpretation). This exploration model has been used successfully in hydrocarbon exploration of many complex foothill areas in western China. Three-dimensional WAZ high-density seismic surveys have been conducted over 40,000 km2 of the foreland basins, greatly improving the field seismic data quality. After application of 3D true-surface TTI anisotropic depth model building and imaging with integrated structural interpretation, new discoveries of hydrocarbon reservoirs have increased. The application of new technologies not only increased drilling success but also reduced depth well-tie errors between seismic data and wells.


2020 ◽  
Author(s):  
Tayammum Alkatheeri ◽  
Guillaume Cambois ◽  
Mohamed Mahgoub ◽  
Glenn Nyein ◽  
Pavel Vasilyev ◽  
...  

2012 ◽  
Vol 463-464 ◽  
pp. 1041-1046
Author(s):  
Ru Tai Duan ◽  
Zhen Kui Jin ◽  
Chong Hui Suo

Progress of 3D seismic technologies has played a vital role in the developments of sedimentology in terms of analytical methodology and concepts. High-density and high-resolution 3D seismic data can be used to reconstruct 3D views of sedimentary paleo-evironment by direct imaging of depositional elements and can also be used to analyze sedimentary paleo-evironment evolution in 3D detail by mapping facies variability at a specific geologic time by slicing though it. And such data connected with well logging data can be used for predictions of rock properties distribution to delineate sedimentologic heterogeneity. High resolution of 3D seismic data mapping can also be used to image the geometry of diagenesis front to a resolution of a few meters over thousands of square kilometers, which is a new approach to the study of diagenesis process in basin scale. The potential for future developments in this field is considerable. Relative methods and examples of such Studies on the aspects mentioned above are presented.


Sign in / Sign up

Export Citation Format

Share Document