Predictive Equations to Quantify the Impact of Spectral Matching on Ground Motion Characteristics

2016 ◽  
Vol 32 (1) ◽  
pp. 125-142 ◽  
Author(s):  
Clinton Carlson ◽  
Dimitrios Zekkos ◽  
Adda Athanasopoulos-Zekkos

Spectral matching, the process of modifying a seed acceleration time history in intensity and frequency content until its acceleration response spectrum matches a target spectrum, is used extensively in practice. Predictive equations that quantify the impact of spectral matching on the peak ground velocity, peak ground displacement, Arias intensity, and cumulative absolute velocity of a scaled seed time history have been developed and validated on the basis of thousands of matched motions, three different earthquake scenarios, and numerous target spectra. It is found that spectral mismatch is the most critical factor affecting the changes in ground motion characteristics. The technique used for modification (e.g., time domain or frequency domain) is in many cases not critical. Based on the results, recommendations in order to minimize the impact of matching on the ground motion characteristics are provided.

2019 ◽  
Vol 35 (1) ◽  
pp. 137-158 ◽  
Author(s):  
Sebastián Castro ◽  
Alan Poulos ◽  
Juan Carlos Herrera ◽  
Juan Carlos de la Llera

Tsunami alerts following severe earthquakes usually affect large geographical regions and require people to evacuate to higher safety zones. However, evacuation routes may be hindered by building debris and vehicles, thus leading to longer evacuation times and an increased risk of loss of life. Herein, we apply an agent-based model to study the evacuation situation of the coastal city of Iquique, north Chile, where most of the population is exposed to inundation from an incoming tsunami. The study evaluates different earthquake scenarios characterized by different ground motion intensities in terms of the evacuation process within a predefined inundation zone. Evacuating agents consider the microscale interactions with cars and other people using a collision avoidance algorithm. Results for the no ground shaking scenario are compared for validation with those of a real evacuation drill done in 2013 for the entire city. Finally, a parametric analysis is performed with ten different levels of ground motion intensity, showing that evacuation times for 95% of the population increase in 2.5 min on average when considering the effect of building debris.


2021 ◽  
Author(s):  
Aybige Akinci ◽  
Daniele Cheloni ◽  
AHMET ANIL DINDAR

Abstract On 30 October 2020 a MW 7.0 earthquake occurred in the eastern Aegean Sea, between the Greek island of Samos and Turkey’s Aegean coast, causing considerable seismic damage and deaths, especially in the Turkish city of Izmir, approximately 70 km from the epicenter. In this study, we provide a detailed description of the Samos earthquake, starting from the fault rupture to the ground motion characteristics. We first use Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) data to constrain the source mechanisms. Then, we utilize this information to analyze the ground motion characteristics of the mainshock in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and spectral pseudo-accelerations. Modelling of geodetic data shows that the Samos earthquake ruptured a NNE-dipping normal fault located offshore north of Samos, with up to 2.5-3 m of slip and an estimated geodetic moment of 3.3 ⨯ 1019 Nm (MW 7.0). Although low PGA were induced by the earthquake, the ground shaking was strongly amplified in Izmir throughout the alluvial sediments. Structural damage observed in Izmir reveals the potential of seismic risk due to the local site effects. To better understand the earthquake characteristics, we generated and compared stochastic strong ground motions with the observed ground motion parameters as well as the ground motion prediction equations (GMPEs), exploring also the efficacy of the region-specific parameters which may be improved to better predict the expected ground shaking from future large earthquakes in the region.


Author(s):  
Jun Gong ◽  
Xudong Zhi ◽  
Feng Fan ◽  
Shizhao Shen ◽  
Da Qaio ◽  
...  

To investigate the variability of ground motion characteristics (GMC) with the angle of seismic incidence (ASI) and the impact of seismic incident directionality on structural responses, first, a large-scale database of recorded ground motions was used to analyze the causes of GMC variability due to the seismic incident directionality effect (SIDE). Then a single-mass bi-degree-of-freedom system (SM-BDOF-S) with different types of symmetrical sections was selected to explore the influence mechanism of SIDE on the seismic responses. The results illustrated that the GMC has substantial variability with the ASI, which is independent of the earthquake source, propagation distance, and site condition, and exhibits complex random characteristics. Additionally, a classification method for ground motions is proposed based on this GMC variability to establish a criterion for selecting ground motions in seismic analysis considering the SIDE. Moreover, for an SM-BDOF-S, the response spectral plane is proposed to explain the transition behavior of spectral responses that are very similar among different stiffness ratios, but divergent for different types of ground motions. The influence of SIDE on structures is determined by their stiffness and stiffness ratio in the [Formula: see text]- and [Formula: see text]-directions, as well as the type of ground motion.


2020 ◽  
pp. 875529302097098
Author(s):  
Luis A Montejo

This article presents a methodology to spectrally match two horizontal ground motion components to an orientation-independent target spectrum (RotDnn). The algorithm is based on the continuous wavelet transform decomposition and iterative manipulation of the two horizontal components of a seed record. The numerical examples presented follow current ASCE/SEI 7 specifications and therefore maximum-direction spectra (RotD100) are used as target for the match. However, the proposed methodology can be used to match other RotDnn spectra, like the median spectrum (RotD50). It is shown that with the proposed methodology the resulting RotDnn from the modified horizontal components closely match the smooth target RotDnn spectrum, while the response spectrum for each horizontal component continue to exhibit a realistic jagged behavior. The response spectra variability at the component level within suites of spectrally matched motions was found to be of the same order than the variability measured in suites composed of amplitude scaled records. Moreover, the spectrally matched records generated preserved most of the characteristics of the seed records, including the nonlinear characteristics of the time history traces and the period-dependent major axis orientations.


2013 ◽  
Vol 438-439 ◽  
pp. 1474-1480
Author(s):  
Ju Fang Zhong ◽  
Long Wei Zhang ◽  
Jun Wei Liang

The key to near-field strong ground motion simulation based on stochastic finite fault method is to determine the spectrum of ground motion. We present an improved source spectrum model for simulation near-field strong ground motion acceleration time history. We combine Masudas source spectrum model with scaling factor Hij to keep radiation energy conservation and reflect the energy decrease with frequency at low to mid frequencies. We calculate the Fourier amplitude spectrum Fa, accelerate response spectrum Sa, velocity response spectrum Sv and displacement response spectrum Sd of simulation time histories. By comparative analysis of the laws of spectrum values (Fa, Sa, Sv, Sd) with the variation of frequency or period, we discusses the effects of sub-fault dividing scheme, the method of determining scale factor and source spectrum model on spectrum values (Fa, Sa, Sv, Sd). The results show that sub-fault dividing scheme has slightly effect on the model presented in this paper, and the model enable to reflect the sink laws of source spectrum value in mid-to-low frequencies well. We demonstrate that the improved model is superior to other commonly used models.


2012 ◽  
Vol 28 (4) ◽  
pp. 1643-1661 ◽  
Author(s):  
Dimitrios Zekkos ◽  
Clinton Carlson ◽  
Ahmed Nisar ◽  
Stephanie Ebert

Ground motion modification (or spectral matching) has been criticized, but has many appealing characteristics and is widely used in practice. Modification of ground motions can be performed in either the time domain or the frequency domain. Depending on the choice of modification technique, modified ground motions can be significantly different from each other as well as from the original ground motion. This paper studies the impact of these differences on seismic geotechnical analyses for two different site profiles using two earthquake scenarios and a total of 20 ground motions. This study shows that the final results are influenced by many factors such as the original (seed) ground motion, the target spectrum, and the local site conditions, in addition to the ground motion modification technique used. The results also show that while both techniques can significantly modify the original ground motion, neither technique is consistently more conservative than the other. Therefore, a general conclusion that a particular technique results in ground motions that yield the largest intensity parameters cannot be made a priori.


2011 ◽  
Vol 243-249 ◽  
pp. 3988-3991 ◽  
Author(s):  
Pei Ju Chang ◽  
Jian Zhu

This study focus on derivation of such fragility curves using classic mid-story isolation and reduction structures (MIRS) in China metropolis. A set of stochastic earthquake waves compatible with the response spectrum of China seismic code selected to represent the variability in ground motion. Dynamic inelastic time history analysis was used to analyze the random sample of structures. The result reveal that good effect for superstructure and reduction effect for substructure of MIRS is favorable and obvious under major earthquake, Weak position of MIRS was be pointed out and fragility curves of typical MIRS of China was obtained finally.


2013 ◽  
Vol 438-439 ◽  
pp. 1471-1473
Author(s):  
Gong Lian Chen ◽  
Wen Zheng Lu ◽  
Lei Wang ◽  
Qi Wu

In order to study the far-field ground motion characteristics and the attenuation of seismic waves, the peak ground acceleration (velocity, displacement), time of duration and response spectrum of the seismic waves were analyzed in this paper. Through the investigation of earthquake wave propagation process, the seismic attenuation low was analyzed. This study can provide technical support for the seismic design of long period structures and related engineering application.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jing-Yan Lan ◽  
Ting Wang ◽  
Diwakar Khatri Chhetri ◽  
Mohammad Wasif Naqvi ◽  
Liang-Bo Hu

The ground motion response in a moderately stiff soil in seismic events has been traditionally studied based on the actual field records which, however, have yet to offer consistent results regarding the amplification effect of the ground motion. In the present study, a centrifuge model of the moderately stiff soil field is designed to study the amplification effect of the ground motion in response to seismic loads. Four El Centro waves of different strengths are used as the input wave at the base under a gravitational field of 75 g. Ground motion data at different depths are collected via a number of sensors to study the acceleration peak, time history, and response spectrum of the ground motion. The measured amplitude and energy of seismic waves are found to gradually increase from the bottom to the surface during the propagation of seismic waves, and the peak acceleration at the surface is significantly magnified. The response spectrum analysis shows that the acceleration response spectrum gradually moves to the high-frequency direction from the base to the surface and the value of the response spectrum decreases with the increase of the depth in the present study.


CivilEng ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 712-735
Author(s):  
Yiwei Hu ◽  
Nelson Lam ◽  
Prashidha Khatiwada ◽  
Scott Joseph Menegon ◽  
Daniel T. W. Looi

Code response spectrum models, which are used widely in the earthquake-resistant design of buildings, are simple to apply but they do not necessarily represent the real behavior of an earthquake. A code response spectrum model typically incorporates ground motion behavior in a diversity of earthquake scenarios affecting the site and does not represent any specific earthquake scenario. The soil amplification phenomenon is also poorly represented, as the current site classification scheme contains little information over the potential dynamic response behavior of the soil sediments. Site-specific response spectra have the merit of much more accurately representing real behavior. The improvement in accuracy can be translated into significant potential cost savings. Despite all the potential merits of adopting site-specific response spectra, few design engineers make use of these code provisions that have been around for a long time. This lack of uptake of the procedure by structural designers is related to the absence of a coherent set of detailed guidelines to facilitate practical applications. To fill in this knowledge gap, this paper aims at explaining the procedure in detail for generating site-specific response spectra for the seismic design or assessment of buildings. Surface ground motion accelerograms generated from the procedure can also be employed for nonlinear time-history analyses where necessary. A case study is presented to illustrate the procedure in a step-by-step manner.


Sign in / Sign up

Export Citation Format

Share Document