Study on Far-Field Ground Motion Characteristics

2013 ◽  
Vol 438-439 ◽  
pp. 1471-1473
Author(s):  
Gong Lian Chen ◽  
Wen Zheng Lu ◽  
Lei Wang ◽  
Qi Wu

In order to study the far-field ground motion characteristics and the attenuation of seismic waves, the peak ground acceleration (velocity, displacement), time of duration and response spectrum of the seismic waves were analyzed in this paper. Through the investigation of earthquake wave propagation process, the seismic attenuation low was analyzed. This study can provide technical support for the seismic design of long period structures and related engineering application.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Zhenming Wang ◽  
David T. Butler ◽  
Edward W. Woolery ◽  
Lanmin Wang

A scenario seismic hazard analysis was performed for the city of Tianshui. The scenario hazard analysis utilized the best available geologic and seismological information as well as composite source model (i.e., ground motion simulation) to derive ground motion hazards in terms of acceleration time histories, peak values (e.g., peak ground acceleration and peak ground velocity), and response spectra. This study confirms that Tianshui is facing significant seismic hazard, and certain mitigation measures, such as better seismic design for buildings and other structures, should be developed and implemented. This study shows that PGA of 0.3 g (equivalent to Chinese intensity VIII) should be considered for seismic design of general building and PGA of 0.4 g (equivalent to Chinese intensity IX) for seismic design of critical facility in Tianshui.


2012 ◽  
Vol 55 (4) ◽  
Author(s):  
Francesca Bozzoni ◽  
Carlo Giovanni Lai ◽  
Laura Scandella

The preliminary results are presented herein for the engineering applications of the characteristics of the ground motion induced by the May 20, 2012, Emilia earthquake. Shake maps are computed to provide estimates of the spatial distribution of the induced ground motion. The signals recorded at the Mirandola (MRN) station, the closest to the epicenter, have been processed to obtain acceleration, velocity and displacement response spectra. Ground-motion parameters from the MRN recordings are compared with the corresponding estimates from recent ground-motion prediction equations, and with the spectra prescribed by the current Italian Building Code for different return periods. The records from the MRN station are used to plot the particle orbit (hodogram) described by the waveform. The availability of results from geotechnical field tests that were performed at a few sites in the Municipality of Mirandola prior to this earthquake of May 2012 has allowed preliminary assessment of the ground response. The amplification effects at Mirandola are estimated using fully stochastic site-response analyses. The seismic input comprises seven actual records that are compatible with the Italian code-based spectrum that refers to a 475-year return period. The computed acceleration response spectrum and the associated dispersion are compared to the spectra calculated from the recordings of the MRN station. Good agreement is obtained for periods up to 1 s, especially for the peak ground acceleration. For the other periods, the spectral acceleration of the MRN recordings exceeds that of the computed spectra.<br />


Author(s):  
Athanasius Cipta ◽  
Phil Cummins ◽  
Masyhur Irsyam ◽  
Sri Hidayati

We use earthquake ground motion modelling via Ground Motion Prediction Equations (GMPEs) and numerical simulation of seismic waves to consider the effects of site amplification and basin resonance in Jakarta, the capital city of Indonesia. While spectral accelerations at short periods are sensitive to near-surface conditions (i.e., Vs30), our results suggest that, for basins as deep as Jakarta&rsquo;s, available GMPEs cannot be relied upon to accurately estimate the effect of basin depth on ground motions at long periods (&gt;1 s). Amplitudes at such long periods are influenced by entrapment of seismic waves in the basin, resulting in longer duration of strong ground motion, and interference between incoming and reflected waves as well as focusing at basin edges may amplify seismic waves. In order to simulate such phenomena in detail, a basin model derived from a previous study is used as a computational domain for deterministic earthquake scenario modeling in a 2-dimensional cross-section. A Mw 9.0 megathrust, a Mw 6.5 crustal thrust and a Mw 7.0 instraslab earthquake are chosen as scenario events that pose credible threats to Jakarta, and the interactions with the basin of seismic waves generated by these events were simulated. The highest PGV amplifications are recorded at sites near the middle of the basin and near its southern edge, with maximum amplifications of PGV in the horizontal component of 200% for the crustal, 600% for the megathrust and 335% for the deep intraslab earthquake scenario, respectively. We find that the levels of ground motion response spectral acceleration fall below those of the 2012 Indonesian building Codes's design response spectrum for short periods (&lt; 1 s), but closely approach or may even exceed these levels for longer periods.


2016 ◽  
Vol 32 (1) ◽  
pp. 125-142 ◽  
Author(s):  
Clinton Carlson ◽  
Dimitrios Zekkos ◽  
Adda Athanasopoulos-Zekkos

Spectral matching, the process of modifying a seed acceleration time history in intensity and frequency content until its acceleration response spectrum matches a target spectrum, is used extensively in practice. Predictive equations that quantify the impact of spectral matching on the peak ground velocity, peak ground displacement, Arias intensity, and cumulative absolute velocity of a scaled seed time history have been developed and validated on the basis of thousands of matched motions, three different earthquake scenarios, and numerous target spectra. It is found that spectral mismatch is the most critical factor affecting the changes in ground motion characteristics. The technique used for modification (e.g., time domain or frequency domain) is in many cases not critical. Based on the results, recommendations in order to minimize the impact of matching on the ground motion characteristics are provided.


2011 ◽  
Vol 378-379 ◽  
pp. 306-309
Author(s):  
Ping Li ◽  
Jing Shan Bo ◽  
Xiao Yun Guo ◽  
You Wei Sun ◽  
Yu Dong Zhang

Regarding the design response spectrum in the code for seismic design of buildings as target spectra,the 28 acceleration histories are formed artificially.They are used as the inputs ground motion in earthquake response analysis.Four site classifications profiles were selected or constructed from practical site profiles.With the use of 1-D equivalent linearization wave motion method that is wildly used at present in site seismic response analysis, the platform values of surface response spectrum for different profiles under different ground motion inputs were calculated.Different platform values of the response spectrum and relational expression which is seven input earthquake motion intensity and site classifications have been given by statistical analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jing-Yan Lan ◽  
Ting Wang ◽  
Diwakar Khatri Chhetri ◽  
Mohammad Wasif Naqvi ◽  
Liang-Bo Hu

The ground motion response in a moderately stiff soil in seismic events has been traditionally studied based on the actual field records which, however, have yet to offer consistent results regarding the amplification effect of the ground motion. In the present study, a centrifuge model of the moderately stiff soil field is designed to study the amplification effect of the ground motion in response to seismic loads. Four El Centro waves of different strengths are used as the input wave at the base under a gravitational field of 75 g. Ground motion data at different depths are collected via a number of sensors to study the acceleration peak, time history, and response spectrum of the ground motion. The measured amplitude and energy of seismic waves are found to gradually increase from the bottom to the surface during the propagation of seismic waves, and the peak acceleration at the surface is significantly magnified. The response spectrum analysis shows that the acceleration response spectrum gradually moves to the high-frequency direction from the base to the surface and the value of the response spectrum decreases with the increase of the depth in the present study.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254871
Author(s):  
Tuo Chen

In this paper, considering the far-field seismic input, an accelerogram recorded in the bedrock at Wuquan Mountain in Lanzhou city during the 2008 Wenchuan Ms8.0 earthquake was selected, and numerical dynamic analyses were conducted. The one-dimensional equivalent linear method was implemented to estimate the ground motion effects in the loess regions. Thereafter, slope topographic effects on ground motion were studied by applying the dynamic finite-element method. The results revealed the relationship between the PGA amplification coefficients and the soil layer thickness, which confirmed that the dynamic response of the sites had obvious nonlinear characteristics. The results also showed that there was an obvious difference in the dynamic magnification factor between the short-period and long-period structures. Moreover, it was found that the amplification coefficient of the observation point at the free surface was greater than the point inside the soil at the same depth, which mainly occurred in the upper slope. Through this study, the quantitative assessment of ground motion effects in loess regions can be approximately estimated, and the amplification mechanism of the far-field ground motion mechanism can be further explained. In addition to the refraction and reflection theory of seismic waves, the resonance phenomenon may help explain the slope topographic effect through spectrum analysis.


2013 ◽  
Vol 4 (1) ◽  
pp. 83-101 ◽  
Author(s):  
Shiv Shankar Kumar ◽  
A. Murali Krishna

In this study, one dimensional equivalent–linear ground response analyses were performed for some typical sites in the Guwahati city, India. Six bore locations covering about 250 km2 area of the city were considered for the analyses. As the strong motion significantly influences the ground response, seven different recorded ground motions, varying in magnitude (6.1 to 8.1) and other ground motion parameters, were adopted. Seismic site analyses were carried out for all layers of borelogs using all the seven earthquakes. Results are presented in terms of surface acceleration histories, strain and shear stress ratio variation, response spectrum, Fourier amplitude ratio versus frequency. The results indicate that accelerations were amplified the most at the surface level. The range of peak ground acceleration (PGA) values obtained at the ground surface is about 0.2 g to 0.79 for a range of PGA considered at bedrock level (rigid half space at bottom of borelog) of 0.1 g to 0.34 g. The Fourier amplifications of ground motion at surface are in the range of 4.14 – 8.99 for a frequency band of 1.75 Hz to 3.13 Hz. The maximum spectral acceleration at six locations varies in the range of 1.0 g – 4.71 g for all the seven earthquakes. The study clearly demonstrated the role for site effect and the type of ground motion on the ground response. For a given earthquake motion, amplification factors at surface level change by almost about 20% to 70% depending on local site conditions.


2020 ◽  
Vol 10 (11) ◽  
pp. 3942 ◽  
Author(s):  
Heungbae Gil ◽  
Kyoungbong Han ◽  
Junho Gong ◽  
Dooyong Cho

In areas of civil engineering, the resilient friction base isolator (R-FBI) system has been used due to its enhanced isolation performance under seismic excitations. However, because nonlinear behavior of the R-FBI should be reflected in seismic design, effective stiffness (Keff) of the R-FBI is uniformly applied at both peak ground acceleration (PGA) of 0.08 g and 0.154 g which use a multimodal response spectrum (RS) method analysis. For rational seismic design of bridges, it should be required to evaluate the dynamics of the R-FBI from in-field tests and to improve the seismic design procedure based on the performance level of the bridges. The objective of this study is to evaluate the dynamics of the R-FBI and to suggest the performance-based seismic design method for cable-supported bridges with the R-FBI. From the comparison between the experiments’ results and modal shape analyses, the modal shape analyses using primary (Ku) or infinite stiffness (fixed end) showed a great agreement with the experimental results compared to the application of Keff in the shape analysis. Additionally, the RS or nonlinear time history method analyses by the PGA levels should be applied by reflecting the dynamic characteristics of the R-FBI for the reasonable and efficient seismic design.


Sign in / Sign up

Export Citation Format

Share Document