Shear Wall Resistance of Lightgage Steel Stud Wall Systems

1990 ◽  
Vol 6 (1) ◽  
pp. 1-14 ◽  
Author(s):  
S. A. Adham ◽  
V. Avanessian ◽  
G. C. Hart ◽  
R. W. Anderson ◽  
J. Elmlinger ◽  
...  

Experimental investigations were conducted to evaluate the lateral load-deflection characteristics of lightgage steel stud/gypsum wallboard panel combinations subjected to lateral cyclic loads. In all, six 8′ × 8′ specimens were tested. A reasonable one-to-one correspondence between the strap area increase and the increase in the contribution from the strap to the overall loadcarrying capacity of the panel at intermediate and high drift ratios was observed. The panel lateral stiffness for a given stabilized cycle degraded by about 7% to 15% as compared with the lateral stiffness of the corresponding virgin cycle. Lateral stiffness degradation increased as the drift ratios became larger. The energy dissipation ability of the panels in the stabilized cycle was about 60% of the virgin cycle. An average value of equivalent viscous damping for all the cycles based on panel hysteretic behavior was about 12%.

2014 ◽  
Vol 20 (4) ◽  
pp. 600-608 ◽  
Author(s):  
David Antolinc ◽  
Vlatka Rajčić ◽  
Roko Žarnić

The idea of the present study is to determine the performance of timber-glass hybrid shear wall exposed to monotone and cyclic horizontal in-plane load at the level of story height which is simulation of situation during earthquake or wind load. Fourteen quasi-static in-plane racking tests of shear wall specimens have been conducted where the specimens are composed of laminated timber frame and heat strengthened laminated glass panels, which are adhesive less, connected to wooden frame with friction only. For the evaluation of the experimental results the software (HYSPA+) was developed which is giving the information on normalised stiffness degradation and equivalent viscous damping coefficient based on the in-plane hysteresis response. The results are showing that described structural components are ductile with relatively high potential for dissipating of induced energy due to friction connection of glass panel and wooden frame. Observed damages were concentrated in timber frame joints, while glass panels remained entirely undamaged. In continuation of development of glass infilled wooden frames the configuration of frame joints will be modified to achieve its higher load bearing capacity and lower deformability.


2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Qin Zhang ◽  
Zong-yan Wei ◽  
Jin-xin Gong ◽  
Ping Yu ◽  
Yan-qing Zhang

In order to determine the energy dissipation capacity of flexure critical reinforced concrete (RC) columns reasonably, an expression for describing the hysteretic behavior including loading and unloading characteristics of flexure critical RC columns is presented, and then, a new equivalent viscous damping (EVD) ratio model including its simplified format, which is interpreted as a function of a displacement ductility factor and a ratio of secant stiffness to yield stiffness of columns, is developed based on the proposed hysteretic loop expression and experimental data from the PEER column database. To illustrate the application of the proposed equivalent damping ratio model, a case study of pushover analysis on a flexure critical RC bridge with a single-column pier is provided. The analytical results are also compared with the results obtained by other models, which indicate that the proposed model is more general and rational in predicting energy dissipation capacity of flexure critical RC structures subjected to earthquake excitations.


2012 ◽  
Vol 174-177 ◽  
pp. 2012-2015
Author(s):  
Xiao Long Zhou ◽  
Ying Min Li ◽  
Lin Bo Song ◽  
Qian Tan

There are two typical seismic damage characteristics to the masonry building with frame shear wall structure at first two stories, and the lateral stiffness ratio of the third storey to the second storey is one of the key factors mostly affecting the seismic performance of this kind of building. However, some factors are not considered sufficiently in current Chinese seismic codes. According to the theory of performance-based seismic design, the seismic performance of this kind of structure is analyzed in this paper by taking time-history analysis on models which with different storey stiffness ratios. The results show that when the lateral stiffness ratio controlled in a reasonable range, the upper masonry deformation can be ensured in a range of elastic roughly, and the bottom frame can be guaranteed to have sufficient deformation and energy dissipation capacity. Finally, according to the seismic performance characteristics of masonry building with frame shear wall structure at first two stories, especially the characteristics under strong earthquakes, a method of simplified calculation model for the upper masonry is discussed in this paper.


Author(s):  
Yasser E. Ibrahim ◽  
Asif Hameed ◽  
Asad Ullah Qazi ◽  
Ali Murtaza Rasool ◽  
Muhammad Farhan Latif ◽  
...  

2011 ◽  
Vol 243-249 ◽  
pp. 499-505
Author(s):  
Can Xing Qiu ◽  
He Tao Hou ◽  
Wei Long Liu ◽  
Ming Lei Wu

A model of full scale one-bay, one storey was tested under low cyclic loading in order to study the hysteretic behavior of steel frames with sandwich composite (SC) panels. According to the failure pattern and damage process of test specimen, seismic behaviors were evaluated. Hysterics loops, skeleton curves, curves of strength degradation, and curves of stiffness degradation, ductility index and viscous damping coefficient were analyzed. Test results show that the failures of panels mainly occurred around the embedded parts, but compared with traditional panels and walls, SC panels exhibit a better integration. The connection between panel and steel frame is vital to the mutual work of the two parts. Finally, seismic design recommendations based on the analysis of ductility index and energy dissipation of the structures are presented.


Author(s):  
Kai Feng ◽  
Xueyuan Zhao ◽  
Zhiyang Guo

With increasing need for high-speed, high-temperature, and oil-free turbomachinery, gas foil bearings (GFBs) have been considered to be the best substitutes for traditional oil-lubricated bearings. A multi-cantilever foil bearing (MCFB), a novel GFB with multi-cantilever foil strips serving as the compliant underlying structure, was designed, fabricated, and tested. A series of static and dynamic load tests were conducted to measure the structural stiffness and equivalent viscous damping of the prototype MCFB. Experiments of static load versus deflection showed that the proposed bearing has a large mechanical energy dissipation capability and a pronounced nonlinear static stiffness that can prevents overly large motion amplitude of journal. Dynamic load tests evaluated the influence of motion amplitude, loading orientation and misalignment on the dynamic stiffness and equivalent viscous damping with respect to excitation frequency. The test results demonstrated that the dynamic stiffness and damping are strongly dependent on the excitation frequency. Three motion amplitudes were applied to the bearing housing to investigate the effects of motion amplitude on the dynamic characteristics. It is noted that the bearing dynamic stiffness and damping decreases with incrementally increasing motion amplitudes. A high level of misalignment can lead to larger static and dynamic bearing stiffness as well as to larger equivalent viscous damping. With dynamic loads applied to two orientations in the bearing midplane separately, the dynamic stiffness increases rapidly and the equivalent viscous damping declines slightly. These results indicate that the loading orientation is a non-negligible factor on the dynamic characteristics of MCFBs.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Kai Feng ◽  
Yuman Liu ◽  
Xueyuan Zhao ◽  
Wanhui Liu

Rotors supported by gas foil bearings (GFBs) experience stability problem caused by subsynchronous vibrations. To obtain a GFB with satisfactory damping characteristics, this study presented a novel hybrid bump-metal mesh foil bearing (HB-MMFB) that consists of a bump foil and metal mesh blocks in an underlying supporting structure, which takes advantage of both bump-type foil bearings (BFBs) and MMFBs. A test rig with a nonrotating shaft was designed to estimate structure characterization. Results from the static load tests show that the proposed HB-MFBs exhibit an excellent damping level compared with the BFBs with a similar size because of the countless microslips in the metal mesh blocks. In the dynamic load tests, the HB-MFB with a metal mesh density of 36% presents a viscous damping coefficient that is approximately twice that of the test BFB. The dynamics structural coefficients of HB-MFBs, including structural stiffness, equivalent viscous damping, and structural loss factor, are all dependent on excitation frequency and motion amplitude. Moreover, they exhibit an obvious decrease with the decline in metal mesh density.


Sign in / Sign up

Export Citation Format

Share Document