Strong-Motion Records of the 2002 Denali Fault, Alaska, Earthquake

2004 ◽  
Vol 20 (3) ◽  
pp. 579-596 ◽  
Author(s):  
Artak Martirosyan ◽  
Roger Hansen ◽  
Natalia Ratchkovski

The MW 7.9 Denali Fault earthquake on 3 November 2002 ruptured a 340-km section along the Susitna Glacier, Denali, and Totschunda faults in central Alaska. The earthquake was digitally recorded at more than 55 strong-motion sites throughout the state at distances up to 280 km from the fault rupture. The site closest to the fault, Trans-Alaska Pipeline Pump Station 10, is located about 3 km north of the surface rupture, where the observed maximum horizontal peak ground acceleration was about 0.35 g. The peak horizontal accelerations observed at the sites closest to the fault rupture were considerably smaller than those yielded by the ground-motion prediction equations. Although the earthquake provided a valuable set of strong-motion data, an important opportunity was missed to capture near-field recordings from such a major strike-slip event. A concerted national effort is needed to prioritize the instrumentation of faults that are likely locations of future great earthquakes.

2004 ◽  
Vol 20 (3) ◽  
pp. 639-667 ◽  
Author(s):  
Robert Kayen ◽  
Eric Thompson ◽  
Diane Minasian ◽  
Robb E. S. Moss ◽  
Brian D. Collins ◽  
...  

The 2002 M7.9 Denali fault earthquake resulted in 340 km of ruptures along three separate faults, causing widespread liquefaction in the fluvial deposits of the alpine valleys of the Alaska Range and eastern lowlands of the Tanana River. Areas affected by liquefaction are largely confined to Holocene alluvial deposits, man-made embankments, and backfills. Liquefaction damage, sparse surrounding the fault rupture in the western region, was abundant and severe on the eastern rivers: the Robertson, Slana, Tok, Chisana, Nabesna and Tanana Rivers. Synthetic seismograms from a kinematic source model suggest that the eastern region of the rupture zone had elevated strong-motion levels due to rupture directivity, supporting observations of elevated geotechnical damage. We use augered soil samples and shear-wave velocity profiles made with a portable apparatus for the spectral analysis of surface waves (SASW) to characterize soil properties and stiffness at liquefaction sites and three trans-Alaska pipeline pump station accelerometer locations.


1981 ◽  
Vol 71 (6) ◽  
pp. 2011-2038 ◽  
Author(s):  
William B. Joyner ◽  
David M. Boore

Abstract We have taken advantage of the recent increase in strong-motion data at close distances to derive new attenuation relations for peak horizontal acceleration and velocity. This new analysis uses a magnitude-independent shape, based on geometrical spreading and anelastic attenuation, for the attenuation curve. An innovation in technique is introduced that decouples the determination of the distance dependence of the data from the magnitude dependence. The resulting equations are log A = − 1.02 + 0.249 M − log r − 0.00255 r + 0.26 P r = ( d 2 + 7.3 2 ) 1 / 2 5.0 ≦ M ≦ 7.7 log V = − 0.67 + 0.489 M − log r − 0.00256 r + 0.17 S + 0.22 P r = ( d 2 + 4.0 2 ) 1 / 2 5.3 ≦ M ≦ 7.4 where A is peak horizontal acceleration in g, V is peak horizontal velocity in cm/ sec, M is moment magnitude, d is the closest distance to the surface projection of the fault rupture in km, S takes on the value of zero at rock sites and one at soil sites, and P is zero for 50 percentile values and one for 84 percentile values. We considered a magnitude-dependent shape, but we find no basis for it in the data; we have adopted the magnitude-independent shape because it requires fewer parameters.


2019 ◽  
Vol 35 (2) ◽  
pp. 955-976 ◽  
Author(s):  
DongSoon Park ◽  
Tadahiro Kishida

It is important to investigate strong-motion time series recorded at dams to understand their complex seismic responses. This paper develops a strong-motion database recorded at existing embankment dams and analyzes correlations between dam dynamic responses and ground-motion parameters. The Japan Commission on Large Dams database used here includes 190 recordings at the crests and foundations of 60 dams during 54 earthquakes from 1978 to 2012. Seismic amplifications and fundamental periods from recorded time series were computed and examined by correlation with shaking intensities and dam geometries. The peak ground acceleration (PGA) at the dam crest increases as the PGA at the foundation bedrock increases, but their ratio gradually decreases. The fundamental period broadly increases with the dam height and PGA at the foundation bedrock. The nonlinear dam response becomes more apparent as the PGA at the foundation bedrock becomes >0.2 g. The prediction models of these correlations are proposed for estimating the seismic response of embankment dams, which can inform the preliminary design stage.


2004 ◽  
Vol 20 (3) ◽  
pp. 597-615 ◽  
Author(s):  
W. L. Ellsworth ◽  
M. Celebi ◽  
J. R. Evans ◽  
E. G. Jensen ◽  
R. Kayen ◽  
...  

A free-field recording of the Denali fault earthquake was obtained by the Alyeska Pipeline Service Company 3 km from the surface rupture of the Denali fault. The instrument, part of the monitoring and control system for the trans-Alaska pipeline, was located at Pump Station 10, approximately 85 km east of the epicenter. After correction for the measured instrument response, we recover a seismogram that includes a permanent displacement of 3.0 m. The recorded ground motion has relatively low peak acceleration (0.36 g) and very high peak velocity (180 cm/s). Nonlinear soil response may have reduced the peak acceleration to this 0.36 g value. Accelerations in excess of 0.1 g lasted for 10 s, with the most intense motion occurring during a 1.5-s interval when the rupture passed the site. The low acceleration and high velocity observed near the fault in this earthquake agree with observations from other recent large-magnitude earthquakes.


Author(s):  
D. J. Dowrick ◽  
S. Sritharan

The attenuation of peak ground accelerations was studied for eight New Zealand earthquakes which occurred in the period 1987 to 1991. These events were of medium size with moment magnitudes in the range Mw = 5.8 - 6.7, with depth to centroids of the fault rupture ranging from 4 to 60 km. Attenuation of peak ground accelerations was examined for each event, based on the slope distance from the rupture surface to each strong motion data site. The mean regression attenuation curve for each event was compared with those derived by others using data sets from other parts of the world, allowance being made for source mechanism and depth. Excepting the 1988 Te Anau event, the other seven New Zealand events as a set closely match a Japanese model, but give significantly stronger accelerations than those predicted by the models from western USA and Europe.


An effective earthquake (Mw 7.9) struck Alaska on 3 November, 2002. This earthquake ruptured 340 km along Susitna Glacier, Denali and Totschunda faults in central Alaska. The peak ground acceleration (PGA) was recorded about 0.32 g at station PS10, which was located 3 km from the fault rupture. The PGA would have recorded a high value, if more instruments had been installed in the region. A numerical study has been conducted to find out the possible ground motion record that could occur at maximum horizontal slip during the Denali earthquake. The current study overcomes the limitation of number of elements to model the Denali fault. These numerical results are compared with observed ground motions. It is observed that the ground motions obtained through numerical analysis are in good agreement with observed ground motions. From numerical results, it is observed that the possible expected PGA is 0.62 g at maximum horizontal slip of Denali fault.


1989 ◽  
Vol 79 (2) ◽  
pp. 500-514 ◽  
Author(s):  
Allison L. Bent ◽  
Donald V. Helmberger ◽  
Richard J. Stead ◽  
Phyllis Ho-Liu

Abstract Long-period body-wave data recorded at teleseismic distances and strong-motion data at Pasadena for the Superstition Hills earthquakes of 24 November 1987 are modeled to obtain the source parameters. We will refer to the event that occurred at 0153 UT as EQ1 and the event at 1316 UT as EQ2. At all distances the first earthquake appears to be a simple left-lateral strike-slip event on a fault striking NE. It is a relatively deep event with a source depth of 10 km. It has a teleseismic moment of 2.7 ×1025 dyne cm. The second and more complex event was modeled in two ways: by using EQ1 as the Green's function and by using a more traditional forward modeling technique to create synthetic seismograms. The first method indicated that EQ2 was a double event with both subevents similar, but not identical to EQ1 and separated by about 7.5 sec. From the synthetic seismogram study we obtained a strike of 305° for the first subevent and 320° for the second. Both have dips of 80° and rakes of 175°. The first subevent has a moment of 3.6 ×1025 which is half that of the second. We obtain depths of at least 6 km. The teleseismic data indicate a preferred subevent separation of 30 km with the second almost due south of the first, but the error bounds are substantial. This would suggest that the subevents occurred on conjugate faults. The strong-motion data at PAS, however, imply a much smaller source separation, with the sources probably produced by asperities.


2000 ◽  
Vol 16 (2) ◽  
pp. 511-532 ◽  
Author(s):  
Jonathan P. Stewart

Strong motion data from sites having both an instrumented structure and free-field accelerograph are compiled to evaluate the conditions for which foundation recordings provide a reasonably unbiased estimate of free-field motion with minimal uncertainty. Variations between foundation and free-field spectral acceleration are found to correlate well with dimensionless parameters that strongly influence kinematic and inertial soil-structure interaction phenomena such as embedement ratio, dimensionless frequency (i.e., product of radial frequency and foundation radius normalized by soil shear wave velocity), and ratio of structure-to-soil stiffness. Low frequency components of spectral acceleration recorded on shallowly embedded foundations are found to provide good estimates of free-field motion. In contrast, foundation-level peak ground acceleration (both horizontal and vertical) and maximum horizontal velocity, are found to be de-amplified. Implications for ground motion selection procedures employed in attenuation relations are discussed, and specific recommendations are made as to how these procedures could be improved.


2012 ◽  
Vol 28 (1) ◽  
pp. 77-103 ◽  
Author(s):  
Sudhir K. Jain ◽  
A. D. Roshan ◽  
Siddharth Yadav ◽  
Sonam Srivastava ◽  
Prabir C. Basu

In the 1960s several hundred structural response recorders (SRR) were installed all over India. An SRR is a simple instrument consisting of six seismoscopes that provide “maximum response” during an earthquake, without providing the time history. In the past earthquakes, these SRRs have provided several hundred records but they have not been effectively utilized for hazard studies because the measurements from these instruments are considered crude. This paper compares the data obtained from SRRs with that from more modern strong-motion accelerographs (SMAs) for four earthquakes in India. It is shown through statistical analysis that the response obtained from the SRRs is comparable to that from the SMAs. A method has been presented for estimating peak ground acceleration (PGA) from SRR data. Thus, it is shown that SRRs can provide a substantial amount of PGA data for attenuation studies. Many countries may find SRRs useful because of the low costs associated with their manufacture and maintenance.


2009 ◽  
Vol 47 (4) ◽  
Author(s):  
B. Hernandez ◽  
M. Cocco ◽  
F. Cotton ◽  
S. Stramondo ◽  
O. Scotti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document