Damage Assessment of Rectangular Concrete-Filled Steel Tubes for Performance-Based Design

2004 ◽  
Vol 20 (4) ◽  
pp. 1317-1348 ◽  
Author(s):  
Cenk Tort ◽  
Jerome F. Hajjar

Damage evolution of rectangular concrete-filled steel tube (RCFT) column and beam-column members as documented in experimental tests is presented in this paper. An experimental database was first constructed that included RCFT tests that were reported in detail in the worldwide literature. Based on the experimental data, appropriate damage states for RCFT members, connections, and frames were defined at different levels of loading. For each damage state, the performance of the specimens was documented quantitatively with the use of deformation-based damage functions, energy-based damage functions, and ductility functions developed in this work. The paper then documents how to use these damage measures to assess capacity of RCFT columns and beam-columns within the context of a performance-based design methodology.

2018 ◽  
Vol 15 (1) ◽  
pp. 59
Author(s):  
NAZRUL AZMI AHMAD ZAMRI ◽  
CLOTILDA PETRUS ◽  
AZMI IBRAHIM ◽  
HANIZAH AB HAMID

The application of concrete filled steel tubes (CFSTs) as composite members has widely been used around the world and is becoming popular day by day for structural application especially in earthquake regions. This paper indicates that an experimental study was conducted to comprehend the behaviour of T-stub end plates connected to concrete filled thin-walled steel tube (CFTST) with different types of bolts and are subjected to pullout load. The bolts used are normal type bolt M20 grade 8.8 and Lindapter Hollo-bolt HB16 and HB20. A series of 10 mm thick T-stub end plates were fastened to 2 mm CFTST of 200 mm x 200 mm in cross-section. All of the specimens were subjected to monotonic pull-out load until failure. Based on test results, the Lidapter Hollo-bolts showed better performance compare to normal bolts. The highest ultimate limit load for T-stub end plate fasten with Lindapter Hollo-bolt is four times higher than with normal bolt although all end plates show similar behaviour and failure mode patterns. It can be concluded that T-stub end plate with Lindapter Hollo-bolt shows a better performance in the service limit and ultimate limit states according to the regulations in the design codes.


2020 ◽  
pp. 93-98
Author(s):  
Viktar V. Tur ◽  
Radoslaw Duda ◽  
Dina Khmaruk ◽  
Viktar Basav

In this paper, a modified strains development model (MSDM) for expansive concrete-filled steel tube (ECFST) was formulated and verified on the experimental data, obtained from testing specimens on the expansion stage. The modified strain development model for restraint strains and self-stresses values estimation in concrete with high expansion energy capacity under any type of the symmetrical and unsymmetrical finite stiffness restraint conditions was proposed. Based on proposed MSDM a new model for expansive concrete-filled steel tubes is developed. The main difference between this model and other previously developed models consists in taking into account in the basic equations an induced force in restrain that is considered as an external load applied to the concrete core of the member. For verification of the proposed model-specific experimental studies were performed. As follows from comparison results restrained expansion strains values calculated following the proposed model shows good compliance with experimental data. The values predicted by the proposed MSDM for concrete-filled steel and obtained experimental data demonstrated good agreement that confirms the validity of the former.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alireza Bahrami ◽  
Ali Mahmoudi Kouhi

Abstract Concrete-filled thin-walled steel tubular slender columns are studied in this paper to evaluate their stiffness. The slender columns have various steel tube thicknesses, length/diameter (width) ratios, and concrete compressive strengths. The columns are loaded by axial and eccentric loads. Two experimental tests of the slender and stub columns are described. Also, the finite element software ABAQUS is utilised to simulate and analyse the columns. The tested columns are simulated taking into account all their features in the tests to verify the simulation of the columns. The simulation results are compared with the tests results which reveal that good agreements exist between them. Thus, the proposed simulation method of the columns is verified. In order to assess the stiffness of the columns under different conditions, various load eccentricities (0 mm, 25 mm, and 50 mm), cross-sectional configurations (circular, rectangular, and square), and steel tube thicknesses (2 mm, 3.35 mm, and 5 mm) are adopted for the developed columns. The columns are simulated and analysed based on the verified simulation method considering the mentioned conditions. As a conclusion, the stiffness of the columns is generally reduced by the increase of the load eccentricity from 0 mm to 25 mm and 50 mm. Further, more uniform distribution of the stiffness is witnessed for the columns with lower eccentricities. In addition, the enhancement of the load eccentricity increased the reduction slope of the stiffness graph for the columns. Although the initial stiffness of the circular column is slightly lower than the rectangular and square columns, the stiffness has more uniform distribution which is preferred. Larger stiffness is achieved for the columns by increasing the steel tube thickness from 2 mm to 3.35 mm and 5 mm.


Holzforschung ◽  
2009 ◽  
Vol 63 (2) ◽  
Author(s):  
Jan-Erik Berg ◽  
Mårten E. Gulliksson ◽  
Per A. Gradin

Abstract An analytical model has been applied to calculate the acquired strain energy density in order to achieve a certain damage state in a softwood fibre by uniaxial tension or shear load. The energy density was found to be dependent on the microfibril angle in the middle secondary wall, the loading case, the thicknesses of the fibre cell wall layers, and conditions, such as moisture content and temperature. At conditions, prevailing at the entrance of the gap between the plates in a refiner and at relative high damage states, more energy is needed to create cracks at higher microfibril angles. The energy density was lower for earlywood compared to latewood fibres. For low microfibril angles, the energy density was lower for loading in shear compared to tension for both earlywood and latewood fibres. Material parameters, such as initial damage state and specific fracture energy, were determined by fitting of input parameters to experimental data.


Author(s):  
Nina N. Serdar ◽  
Jelena R. Pejovic ◽  
Radenko Pejovic ◽  
Miloš Knežević

<p>It is of great importance that traffic network is still functioning in post- earthquake period, so that interventions in emergency situations are not delayed. Bridges are part of the traffic system that can be considered as critical for adequate post-earthquake response. Their seismic response often dominate the response and reliability of overall transportation system, so special attention should be given to risk assessment for these structures. In seismic vulnerability and risk assessment bridges are often classified as regular or irregular structures, dependant on their configuration. Curved bridges are considered as irregular and unexpected behaviour during seismic excitation is noticed in past earthquake events. Still there are an increasing number of these structures especially in densely populated urban areas since curved configuration is often suitable to accommodate complicated location conditions. In this paper special attention is given to seismic risk assessment of curved reinforce concrete bridges through fragility curves. Procedure for developing fragility curves is described as well as influence of radius curvature on their seismic vulnerability is investigated. Since vulnerability curves provide probability of exceedance of certain damage state, four damage states are considered: near collapse, significant damage, intermediate damage state, onset of damage and damage limitation. As much as possible these damage states are related to current European provisions. Radius of horizontal curvature is varied by changing subtended angle: 25 °, 45 ° and 90 °. Also one corresponding straight bridge is analysed. Nonlinear static procedure is used for developing of fragility curves. It was shown that probability of exceedance of certain damage states is increased as subtended angle is increased. Also it is determined that fragility of curved bridges can be related to fragility of straight counterparts what facilitates seismic evaluation of seismic vulnerability of curved bridges structures.</p>


Author(s):  
Fabrizio Paolacci ◽  
Daniele Corritore ◽  
Antonio C. Caputo ◽  
Oreste S. Bursi ◽  
Bledar Kalemi

The damage states in a storage tank subjected to seismic loading can induce loss of containment (LOC) with possible consequences (fire, explosion, etc..) both for the surrounding units and people. This aspect is particularly crucial for the Quantitative Risk Analysis (QRA) of industrial plants subjected to earthquakes. Classical QRA methodologies are based on standard LOC conditions whose frequency of occurrence is mainly related to technological accident rather than natural events and are thus useless. Therefore, it is evident the necessity of establishing new procedures for the evaluation of the frequencies of occurrence of LOC events in storage tanks when subjected to an earthquake. Consequently, in this work a simple procedure founded on a probabilistic linear regression-based model is proposed, which uses simplified numerical models typically adopted for the seismic response of above ground storage tanks. Based on a set of predetermined LOC events (e.g. damage in the pipes, damage in the nozzles, etc..), whose probabilistic relationship with the local response (stress level, etc..) derives from experimental tests, the probabilistic relationship of selected response parameters with the seismic intensity measure (IM) is established. As result, for each LOC event, the cloud analysis method is used to derive the related fragility curve.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Yijie Huang ◽  
Yuedong Sun ◽  
Huangsheng Sun ◽  
Qing Wang

A new mechanical model for analysing the behaviour of axially loaded recycled aggregate concrete filled steel tubes (RACFSTs) stub columns is presented in this study. The model is derived from the typical elastoplasticity, the nonlinear elastic mechanics, and the properties of materials. Based on the mechanical model, a novel numerical program is developed. The mechanical model and the numerical program are adopted to study the effect of recycled coarse aggregate (RCA) replacement percentage on RACFST mechanical behaviour. The complete load-deformation relationship of specimens, the steel tube axial and circumferential stresses, and the performance of the confined core concrete and the variation of interaction are also investigated. The analytical results indicate that this model is able to capture the mechanical behaviour of RACFST. It is also found that the axial and circumferential stresses of steel tube change nonlinearly during the loading stages. It is concluded that the behaviour of the confined core concrete is significantly influenced by the confining pressure. The steel tube confinement could improve the mechanical behaviour of RAC effectively and the RCA replacement percentage slightly changes the response of core concrete. Finally, the relations between confined core concrete and confining pressure are analysed.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Matteo Bucci ◽  
Philippe Fillion

This paper discusses the results of a computational activity devoted to the prediction of two-phase flows in subchannels and in rod bundles. The capabilities of the FLICA-OVAP code have been tested against an extensive experimental database made available by the Japanese Nuclear Power Energy Corporation (NUPEC) in the frame of the PWR subchannel and bundle tests (PSBT) international benchmark promoted by OECD and NRC. The experimental tests herein addressed involve void fraction distributions and boiling crisis phenomena in rod bundles with uniform and nonuniform heat flux conditions. Both steady-state and transient scenarios have been addressed, including power increase, flow reduction, temperature increase, and depressurization, representative of PWR thermal-hydraulics conditions. After a brief description of the main features of FLICA-OVAP, the relevant physical models available within the code are detailed. Results obtained in the different tests included in the PSBT void distribution and DNB benchmarks are therefore reported. The relevant role of selected physical models is discussed.


Sign in / Sign up

Export Citation Format

Share Document