A Non-Gaussian Kalman Filter With Application to the Estimation of Vehicular Speed

Technometrics ◽  
2009 ◽  
Vol 51 (2) ◽  
pp. 162-172 ◽  
Author(s):  
Baibing Li
Author(s):  
Baojian Yang ◽  
Lu Cao ◽  
Dechao Ran ◽  
Bing Xiao

Due to unavoidable factors, heavy-tailed noise appears in satellite attitude estimation. Traditional Kalman filter is prone to performance degradation and even filtering divergence when facing non-Gaussian noise. The existing robust algorithms have limited accuracy. To improve the attitude determination accuracy under non-Gaussian noise, we use the centered error entropy (CEE) criterion to derive a new filter named centered error entropy Kalman filter (CEEKF). CEEKF is formed by maximizing the CEE cost function. In the CEEKF algorithm, the prior state values are transmitted the same as the classical Kalman filter, and the posterior states are calculated by the fixed-point iteration method. The CEE EKF (CEE-EKF) algorithm is also derived to improve filtering accuracy in the case of the nonlinear system. We also give the convergence conditions of the iteration algorithm and the computational complexity analysis of CEEKF. The results of the two simulation examples validate the robustness of the algorithm we presented.


2013 ◽  
Vol 683 ◽  
pp. 824-827
Author(s):  
Tian Ding Chen ◽  
Chao Lu ◽  
Jian Hu

With the development of science and technology, target tracking was applied to many aspects of people's life, such as missile navigation, tanks localization, the plot monitoring system, robot field operation. Particle filter method dealing with the nonlinear and non-Gaussian system was widely used due to the complexity of the actual environment. This paper uses the resampling technology to reduce the particle degradation appeared in our test. Meanwhile, it compared particle filter with Kalman filter to observe their accuracy .The experiment results show that particle filter is more suitable for complex scene, so particle filter is more practical and feasible on target tracking.


Author(s):  
Seyed Fakoorian ◽  
Mahmoud Moosavi ◽  
Reza Izanloo ◽  
Vahid Azimi ◽  
Dan Simon

Non-Gaussian noise may degrade the performance of the Kalman filter because the Kalman filter uses only second-order statistical information, so it is not optimal in non-Gaussian noise environments. Also, many systems include equality or inequality state constraints that are not directly included in the system model, and thus are not incorporated in the Kalman filter. To address these combined issues, we propose a robust Kalman-type filter in the presence of non-Gaussian noise that uses information from state constraints. The proposed filter, called the maximum correntropy criterion constrained Kalman filter (MCC-CKF), uses a correntropy metric to quantify not only second-order information but also higher-order moments of the non-Gaussian process and measurement noise, and also enforces constraints on the state estimates. We analytically prove that our newly derived MCC-CKF is an unbiased estimator and has a smaller error covariance than the standard Kalman filter under certain conditions. Simulation results show the superiority of the MCC-CKF compared with other estimators when the system measurement is disturbed by non-Gaussian noise and when the states are constrained.


2021 ◽  
Author(s):  
Marie Turčičová ◽  
Jan Mandel ◽  
Kryštof Eben

<p>A widely popular group of data assimilation methods in meteorological and geophysical sciences is formed by filters based on Monte-Carlo approximation of the traditional Kalman filter, e.g. <span>E</span><span>nsemble Kalman filter </span><span>(EnKF)</span><span>, </span><span>E</span><span>nsemble </span><span>s</span><span>quare-root filter and others. Due to the computational cost, ensemble </span><span>size </span><span>is </span><span>usually </span><span>small </span><span>compar</span><span>ed</span><span> to the dimension of the </span><span>s</span><span>tate </span><span>vector. </span><span>Traditional </span> <span>EnKF implicitly uses the sample covariance which is</span><span> a poor estimate of the </span><span>background covariance matrix - singular and </span><span>contaminated by </span><span>spurious correlations. </span></p><p><span>W</span><span>e focus on modelling the </span><span>background </span><span>covariance matrix by means of </span><span>a linear model for its inverse. This is </span><span>particularly </span><span>useful</span> <span>in</span><span> Gauss-Markov random fields (GMRF), </span><span>where</span> <span>the inverse covariance matrix has </span><span>a banded </span><span>structure</span><span>. </span><span>The parameters of the model are estimated by the</span><span> score matching </span><span>method which </span><span>provides</span><span> estimators in a closed form</span><span>, cheap to compute</span><span>. The resulting estimate</span><span> is a key component of the </span><span>proposed </span><span>ensemble filtering algorithms. </span><span>Under the assumption that the state vector is a GMRF in every time-step, t</span><span>he Score matching filter with Gaussian resamplin</span><span>g (SMF-GR) </span><span>gives</span><span> in every time-step a consistent (in the large ensemble limit) estimator of mean and covariance matrix </span><span>of the forecast and analysis distribution</span><span>. Further, we propose a filtering method called Score matching ensemble filter (SMEF), based on regularization of the EnK</span><span>F</span><span>. Th</span><span>is</span><span> filter performs well even for non-Gaussian systems with non-linear dynamic</span><span>s</span><span>. </span><span>The performance of both filters is illustrated on a simple linear convection model and Lorenz-96.</span></p>


2018 ◽  
Author(s):  
◽  
Tao Sun

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Nonlinear estimation and filtering have been intensively studied for decades since it has been widely used in engineering and science such as navigation, radar signal processing and target tracking systems. Because the posterior density function is not a Gaussian distribution, then the optimal solution is intractable. The nonlinear/non-Gaussian estimation problem is more challenging than the linear/Gaussian case, which has an optimal closed form solution, i.e. the celebrated Kalman filter. Many nonlinear filters including the extended Kalman filter, the unscented Kalman filter and the Gaussian-approximation filters, have been proposed to address nonlinear/non-Gaussian estimation problems in the past decades. Although the estimate yield by Gaussian-approximation filters such as cubature Kalman filters and Gaussian-Hermite quadrature filters is satisfied in many applications, there are two obvious drawbacks embedded in the use of Gaussian filters. On the one hand, with the increase of the quadrature points, much computational effort is devoted to approximate Gaussian integrals, which is not worthy sometimes. On the other hand, by the use of the update rule, the estimate constrains to be a linear function of the observation. In this dissertation, we aim to address this two shortcoming associated with the conventional nonlinear filters. We propose two nonlinear filters in the dissertation. Based on an adaptive strategy, the first one tries to reduce the computation cost during filtering without sacrificing much accuracy, because when the system is close to be linear, the lower level Gaussian quadrature filter is sufficient to provide accurate estimate. The adaptive strategy is used to evaluate the nonlinearity of the system at current time first and then utilize different quadrature rule for filtering. Another filter aims to modify the conventional update rule, i.e. the linear minimum mean square error (LMMSE) rule, to involve a nonlinear transformation of the observation, which is proven to be an efficient way to exploit more information from the original observation. According to the orthogonal property, we propose a novel approach to construct the nonlinear transformation systematically. The augmented nonlinear filter outperforms Gaussian filters and other conventional augmented filters in terms of the root mean square error and onsistency. Furthermore, we also extend the work to the more general case. The higher order moments can be utilized to construct the nonlinear transformation and in turn, the measurement space can be expand efficiently. Without the Gaussian assumption, the construction of the nonlinear transformation only demand the existence of a finite number of moments. Finally, the simulation results validate and demonstrate the superiority of the adaptive and augmented nonlinear filters.


Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 117
Author(s):  
Xuyou Li ◽  
Yanda Guo ◽  
Qingwen Meng

The maximum correntropy Kalman filter (MCKF) is an effective algorithm that was proposed to solve the non-Gaussian filtering problem for linear systems. Compared with the original Kalman filter (KF), the MCKF is a sub-optimal filter with Gaussian correntropy objective function, which has been demonstrated to have excellent robustness to non-Gaussian noise. However, the performance of MCKF is affected by its kernel bandwidth parameter, and a constant kernel bandwidth may lead to severe accuracy degradation in non-stationary noises. In order to solve this problem, the mixture correntropy method is further explored in this work, and an improved maximum mixture correntropy KF (IMMCKF) is proposed. By derivation, the random variables that obey Beta-Bernoulli distribution are taken as intermediate parameters, and a new hierarchical Gaussian state-space model was established. Finally, the unknown mixing probability and state estimation vector at each moment are inferred via a variational Bayesian approach, which provides an effective solution to improve the applicability of MCKFs in non-stationary noises. Performance evaluations demonstrate that the proposed filter significantly improves the existing MCKFs in non-stationary noises.


2018 ◽  
Vol 82 (3) ◽  
pp. 224-231 ◽  
Author(s):  
Hoon‐Seok Jang ◽  
Mannan Saeed Muhammad ◽  
Tae‐Sun Choi

2020 ◽  
Vol 10 (15) ◽  
pp. 5045 ◽  
Author(s):  
Ming Lin ◽  
Byeongwoo Kim

The location of the vehicle is a basic parameter for self-driving cars. The key problem of localization is the noise of the sensors. In previous research, we proposed a particle-aided unscented Kalman filter (PAUKF) to handle the localization problem in non-Gaussian noise environments. However, the previous basic PAUKF only considers the infrastructures in two dimensions (2D). This previous PAUKF 2D limitation rendered it inoperable in the real world, which is full of three-dimensional (3D) features. In this paper, we have extended the previous basic PAUKF’s particle weighting process based on the multivariable normal distribution for handling 3D features. The extended PAUKF also raises the feasibility of fusing multisource perception data into the PAUKF framework. The simulation results show that the extended PAUKF has better real-world applicability than the previous basic PAUKF.


2015 ◽  
Vol 143 (4) ◽  
pp. 1347-1367 ◽  
Author(s):  
Julian Tödter ◽  
Bodo Ahrens

Abstract The ensemble Kalman filter (EnKF) and its deterministic variants, mostly square root filters such as the ensemble transform Kalman filter (ETKF), represent a popular alternative to variational data assimilation schemes and are applied in a wide range of operational and research activities. Their forecast step employs an ensemble integration that fully respects the nonlinear nature of the analyzed system. In the analysis step, they implicitly assume the prior state and observation errors to be Gaussian. Consequently, in nonlinear systems, the analysis mean and covariance are biased, and these filters remain suboptimal. In contrast, the fully nonlinear, non-Gaussian particle filter (PF) only relies on Bayes’s theorem, which guarantees an exact asymptotic behavior, but because of the so-called curse of dimensionality it is exposed to weight collapse. Here, it is shown how to obtain a new analysis ensemble whose mean and covariance exactly match the Bayesian estimates. This is achieved by a deterministic matrix square root transformation of the forecast ensemble, and subsequently a suitable random rotation that significantly contributes to filter stability while preserving the required second-order statistics. The properties and performance of the proposed algorithm are further investigated via a set of experiments. They indicate that such a filter formulation can increase the analysis quality, even for relatively small ensemble sizes, compared to other ensemble filters in nonlinear, non-Gaussian scenarios. Localization enhances the potential applicability of this PF-inspired scheme in larger-dimensional systems. The proposed algorithm, which is fairly easy to implement and computationally efficient, is referred to as the nonlinear ensemble transform filter (NETF).


Sign in / Sign up

Export Citation Format

Share Document