Molecular Genetics of Adult Acute Myeloid Leukemia: Prognostic and Therapeutic Implications

2011 ◽  
Vol 29 (5) ◽  
pp. 475-486 ◽  
Author(s):  
Guido Marcucci ◽  
Torsten Haferlach ◽  
Hartmut Döhner

Molecular analyses of leukemic blasts from patients with acute myeloid leukemia (AML) have revealed a striking heterogeneity with regard to the presence of acquired gene mutations and changes in gene and microRNA expression. Multiple submicroscopic genetic alterations with prognostic significance have been discovered. Application of gene- and microRNA profiling has identified genome-wide expression signatures that separate cytogenetic and molecular subsets of patients with AML into previously unrecognized biologic and/or prognostic subgroups. These and similar future findings are likely to have a major impact on the clinical management of AML because many of the identified genetic alterations not only represent independent prognosticators, but also may constitute targets for specific therapeutic intervention. In this report, we review genetic findings in AML and discuss their clinical implications.

Hematology ◽  
2006 ◽  
Vol 2006 (1) ◽  
pp. 169-177 ◽  
Author(s):  
Krzysztof Mrózek ◽  
Clara D. Bloomfield

Abstract Pretreatment clinical features and prognosis of patients with acute myeloid leukemia (AML) are strongly influenced by acquired genetic alterations in leukemic cells, which include microscopically detectable chromosome aberrations and, increasingly, submicroscopic gene mutations and changes in gene expression. Cytogenetic findings separate AML patients into three broad prognostic categories: favorable, intermediate and adverse. The cytogenetic-risk classifications differ somewhat for younger adult patients and those aged 60 years or older. In many instances, patients with specific cytogenetic findings, e.g., those with a normal karyotype or those with either t(8;21)(q22;q22) or inv(16)(p13q22)/t(16;16)(p13;q22) [collectively referred to as core-binding factor (CBF) AML] can be further subdivided into prognostic categories based on the presence or absence of particular gene mutations or changes in gene expression. Importantly, many of these molecular genetic alterations constitute potential targets for risk-adapted therapies. In this article, we briefly review major cytogenetic prognostic categories and discuss molecular genetic findings of prognostic significance in two of the largest cytogenetic groups of patients with AML, namely AML with a normal karyotype and CBF AML.


Leukemia ◽  
2016 ◽  
Vol 30 (7) ◽  
pp. 1485-1492 ◽  
Author(s):  
C-H Tsai ◽  
H-A Hou ◽  
J-L Tang ◽  
C-Y Liu ◽  
C-C Lin ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4956-4956
Author(s):  
Cheng-Hong Tsai ◽  
Hsin-An Hou ◽  
Wen-Chien Chou ◽  
Chien-Chin Lin ◽  
Chien-Yuan Chen ◽  
...  

Abstract Introduction Risk-stratification of patients with acute myeloid leukemia (AML) can not only improve treatment response, but also reduce side effects of the treatment, especially in the elderly. A number of patient-specific and leukemia-associated factors are related to the poor outcome in older patients with AML. However, comprehensive studies regarding the impact of genetic alterations in this group of patients are limited. Methods and Materials A total of 500 adult patients with newly diagnosed de novo AML who had enough bone marrow cryopreserved cells for analysis at the National Taiwan University Hospital were enrolled consecutively. We compared the clinico-biological features, cytogenetics and molecular gene mutations between patients aged 60 years or older (n=185) and those younger (<60 years, n=315). Result Among older patients, those received standard intensive chemotherapy had a longer overall survival (OS) than those treated with palliative care. Compared with younger patients, the elderly had a higher incidence of poor-risk cytogenetic changes, but a lower frequency of favorable-risk cytogenetics. The median number of molecular gene mutations at diagnosis was higher in the elderly than the younger. Older patients had significantly higher incidences of PTPN11, NPM1, RUNX1, ASXL1, TET2, DNMT3A, and P53 mutations but a lower frequency of WT1 mutations. In multivariate analysis for OS among the elderly who received standard intensive chemotherapy, high WBC >50,000/μL at diagnosis, RUNX1 mutations, DNMT3A mutations, and P53 mutations were independent worse prognostic factors, while the presence of NPM1 mutations in the abcence of FLT3/ITD mutations was an independent good prognostic factor. The frequency of acquiring one or more adverse genetic alterations was much higher in older patients than younger ones. Further, the pattern of gene mutations could divide older patients with intermediate cytogenetics into three groups with significantly different complete remission rates, OS, and disease-free survival. Conclusion Older AML patients frequently harbored high-risk cytogenetics and gene mutations, and had poorer prognosis. Integration of cytogenetics and molecular alterations could risk-stratify older patients into groups with significant different outcomes. For those patients with poor prognosis under current chemotherapy, novel therapies, such as demethylating agents or other targeted therapies may be indicated. Disclosures Tang: Novartis: Consultancy, Honoraria.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5228-5228
Author(s):  
Genki Yamato ◽  
Hiroki Yamaguchi ◽  
Hiroshi Handa ◽  
Norio Shiba ◽  
Satoshi Wakita ◽  
...  

Abstract Background Acute myeloid leukemia (AML) is a complex disease caused by various genetic alterations. Some prognosis-associated cytogenetic aberrations or gene mutations such as FLT3-internal tandem duplication (ITD), t(8;21)(q22;q22)/RUNX1-RUNX1T1, and inv(16)(p13q22)/CBFB-MYH11 have been found and used to stratify the risk. Numerous gene mutations have been implicated in the pathogenesis of AML, including mutations of DNMT3A, IDH1/2, TET2 and EZH2 in addition to RAS, KIT, NPM1, CEBPA and FLT3in the recent development of massively parallel sequencing technologies. However, even after incorporating these molecular markers, the prognosis is unclear in a subset of AML patients. Recently, NUP98-NSD1 fusion gene was identified as a poor prognostic factor for AML. We have reported that all pediatric AML patients with NUP98-NSD1 fusion showed high expression of the PR domain containing 16 (PRDM16; also known as MEL1) gene, which is a zinc finger transcription factor located near the breakpoint at 1p36. PRDM16 is highly homologous to MDS1/EVI1, which is an alternatively spliced transcript of EVI1. Furthermore, PRDM16 is essential for hematopoietic stem cell maintenance and remarkable as a candidate gene to induce leukemogenesis. Recent reports revealed that high PRDM16 expression was a significant marker to predict poor prognosis in pediatric AML. However, the significance of PRDM16 expression is unclear in adult AML patients. Methods A total of 151 adult AML patients (136 patients with de novo AML and 15 patients with relapsed AML) were analyzed. They were referred to our institution between 2004 and 2015 and our collaborating center between 1996 and 2013. The median length of follow-up for censored patients was 30.6 months. Quantitative RT-PCR analysis was performed using the 7900HT Fast Real Time PCR System with TaqMan Gene Expression Master Mix and TaqMan Gene Expression Assay. In addition to PRDM16, ABL1 was also evaluated as a control gene. We investigated the correlations between PRDM16 gene expression and other genetic alterations, such as FLT3-ITD, NPM1, and DNMT3A, and clarified the prognostic impact of PRDM16 expression in adult AML patients. Mutation analyses were performed by direct sequence analysis, Mutation Biased PCR, and the next-generation sequencer Ion PGM. Results PRDM16 overexpression was identified in 29% (44/151) of adult AML patients. High PRDM16 expression correlated with higher white blood cell counts in peripheral blood and higher blast ratio in bone marrow at diagnosis; higher coincidence of mutation in NPM1 (P = 0.003) and DNMT3A (P = 0.009); and lower coincidence of t(8;21) (P = 0.010), low-risk group (P = 0.008), and mutation in BCOR (P = 0.049). Conversely, there were no significant differences in age at diagnosis and sex distribution. Patients with high PRDM16 expression tended to be low frequency in M2 (P = 0.081) subtype, and the remaining subtype had no significant differences between high and low PRDM16 expression. Remarkably, PRDM16 overexpression patients were frequently observed in non-complete remission (55.8% vs. 26.3%, P = 0.001). Patients with high PRDM16 expression tended to have a cumulative incidence of FLT3-ITD (37% vs. 21%, P = 0.089) and MLL-PTD (15% vs. 5%, P = 0.121). We analyzed the prognosis of 139 patients who were traceable. The overall survival (OS) and median survival time (MST) of patients with high PRDM16 expression were significantly worse than those of patients with low expression (5-year OS, 17% vs. 32%; MST, 287 days vs. 673 days; P = 0.004). This trend was also significant among patients aged <65 years (5-year OS, 25% vs. 48%; MST, 361 days vs. 1565 days, P = 0.013). Moreover, high PRDM16 expression was a significant prognostic factor for FLT3-ITD negative patients aged < 65 years in the intermediate cytogenetic risk group (5-year OS, 29% vs. 58%; MST, 215 days vs. undefined; P = 0.032). Conclusions We investigated the correlations among PRDM16 expression, clinical features, and other genetic alterations to reveal clinical and prognostic significance. High PRDM16 expression was independently associated with non-CR and adverse outcomes in adult AML patients, as well as pediatric AML patients. Our finding indicated that the same pathogenesis may exist in both adult and pediatric AML patients with respect to PRDM16 expression, and measuring PRDM16 expression was a powerful tool to predict the prognosis of adult AML patients. Disclosures Inokuchi: Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria; Celgene: Honoraria; Pfizer: Honoraria.


2020 ◽  
Vol 22 (6) ◽  
Author(s):  
Ludovica Marando ◽  
Brian J. P. Huntly

Abstract Purpose of Review The field of acute myeloid leukemia (AML) has been revolutionized in recent years by the advent of high-throughput techniques, such as next-generation sequencing. In this review, we will discuss some of the recently identified mutations that have defined a new molecular landscape in this disease, as well as their prognostic, predictive, and therapeutic implications. Recent Findings Recent studies have shown how many cases of AML evolve from a premalignant period of latency characterized by the accumulation of several mutations and the emergence of one or multiple dominant clones. The pattern of co-occurring mutations and cytogenetic abnormalities at diagnosis defines risk and can determine therapeutic approaches to induce remission. Besides the genetic landscape at diagnosis, the continued presence of particular gene mutations during or after treatment carries prognostic information that should further influence strategies to maintain remission in the long term. Summary The recent progress made in AML research is a seminal example of how basic science can translate into improving clinical practice. Our ability to characterize the genomic landscape of individual patients has not only improved our ability to diagnose and prognosticate but is also bringing the promise of precision medicine to fruition in the field.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3546-3546
Author(s):  
Michael W.M. Kühn ◽  
Lars Bullinger ◽  
Jennifer Edelmann ◽  
Jan Krönke ◽  
Gröschel Stefan ◽  
...  

Abstract Abstract 3546 Rearrangements of the mixed lineage leukemia (MLL) gene are associated with the development of acute leukemia, and a variety of translocation partners have been described to date. In acute myeloid leukemia (AML), the translocation t(9;11)(p22;q23), resulting in the MLLT3-MLL fusion gene, is the most common genetic event involving MLL. The translocation t(9;11) can occur de novo, or as a consequence of previous chemotherapy (t-AML). Both types exhibit significant biological and clinical heterogeneity, and cooperating genetic events have been implicated underlying these heterogeneous phenotypes. To identify additional genomic abnormalities in AML with t(9;11), we performed high-resolution, genome-wide analysis of DNA copy number alterations (CNA) and copy neutral loss of heterozygosity (CN-LOH) using Affymetrix 6.0 single nucleotide polymorphism (SNP) microarrays in 34 AMLs with t(9;11) [de novo AML, n=22; t-AML, n=12]. Samples were also analyzed for AML-associated mutations: FLT3 [internal tandem duplication (ITD; 2/33); tyrosine kinase domain (TKD; 2/26)], NPM1 (0/28), CEBPA (0/23), IDH1 (0/28), IDH 2 (0/28), DNMT3A (0/19), NRAS (0/6); and deregulated expression of EVI1 (8/16). Control DNA from remission bone marrow or peripheral blood was available for paired analysis in 12 (33%) cases. Data were processed using reference alignment, dChipSNP, and circular binary segmentation. Paired analysis revealed a mean of 1.9 somatic CNAs per case (range: 0–12); 45% of cases lacked any CNAs. Deletions were more common than gains (1.73 losses/case vs. 0.25 gains/case; p =0.04). There were no significant differences in the mean number of CNAs between de novo and therapy-related cases (de novo AML: 1.0, range: 0–2; t-AML: 2.7, range: 0–12; p =0.93). Recurrent deletions were detected at chromosomal bands 7q36.1–36.2 (n=2) and at the chromosomal translocation breakpoint at 11q23 (n=2). The del(7q36.1–36.2) overlapped with a minimally deleted region at 7q36.1 that we previously identified in 8% of core-binding factor AML containing only 4 genes (PRKAG2, GALNT11, GALNTL5 and MLL3). The only gene contained in both regions was MLL3, a member of the mixed-lineage leukemia gene family. The most recurrent CNA was trisomy 8 (n=5), also detected by conventional cytogenetics in all 5 cases. Novel recurrent focal gains were identified at 9p22.1 (n=2; size: 341 Kb) and at 13q21.33-q22.1 (n=2; size: 1021 Kb) with each region containing genes potentially involved in cancer pathogenesis (ACER2 in 9p; KLF5 in 13q). Analysis of CN-LOH revealed no such lesion in any of the cases. In summary, our data provide a comprehensive survey of CNAs in a well characterized cohort of AMLs with t(9;11). These data demonstrate a very low occurrence of CNAs, with no significant differences between de novo and therapy-related cases and complete absence of CN-LOH. Interestingly, a number of novel recurrent secondary genetic alterations were identified. Determining the functional role of these lesions in leukemogenesis and drug resistance should provide new insights into t(9;11)-bearing AMLs. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Shano Naseem ◽  
Jogeshwar Binota ◽  
Neelam Varma ◽  
Harpreet Virk ◽  
Subhash Varma ◽  
...  

Background: A number of mutations have been reported to occur in patients with acute myeloid leukemia (AML), of which NPM1 and FLT3 genes mutations are the commonest and have important diagnostic and therapeutic implications. Material and Methods: Molecular testing for NPM1 and FLT3 genes was performed in 92 de-novo AML patients. The frequency and characteristics of NPM1 and FLT3 mutations were analyzed. Results: Nucleophosmin 1(NPM1) and FMS-like tyrosine kinase 3 (FLT3) mutations were seen in 22.8% and 16.3% of patients, respectively. Amongst FLT3 mutations, FLT3-ITD mutation was seen in 8.7% cases, FLT3- TKD in 5.4%, and FLT3-ITD+TKD in 2.2% cases. Certain associations between the gene mutations and clinical characteristics were found, including in NPM1 mutated group- female preponderance, higher incidence in M4/M5 categories and decreased expression of CD34 and HLA-DR; and in FLT3-ITD mutated group- higher age of presentation, higher total leucocyte count and blast percentage. Conclusion- AML patients with NPM1 and FLT3 mutations have differences in clinical and hematological features, which might represent their different molecular mechanism in leukemogenesis. The frequency of NPM1 and FLT3 mutations in this study was comparable to reports from Asian countries but lower than that reported from western countries. However, as the number of patients in the study was less, a larger number of patients need to be studied to corroborate these findings.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 570 ◽  
Author(s):  
Maël Heiblig ◽  
Hélène Labussière-Wallet ◽  
Franck Emmanuel Nicolini ◽  
Mauricette Michallet ◽  
Sandrine Hayette ◽  
...  

Although the outcome in younger adults with acute myeloid leukemia (AML) has improved, the benefit associated with standard intensive chemotherapy in older patients remains debatable. In this study, we investigated the incidence and the prognostic significance of genetic characteristics according to treatment intensity in patients aged 60 years or older. On the 495 patients of our cohort, DNMT3A R882 (25.2%), NPM1 (23.7%) and FLT3-ITD (16.8%) were the most frequent molecular mutations found at diagnosis. In this elderly population, intensive chemotherapy seemed to be a suitable option in terms of early death and survival, except for normal karyotype (NK) NPM1−FLT3-ITD+ patients and those aged over 70 within the adverse cytogenetic/molecular risk group. The FLT3-ITD mutation was systematically associated with an unfavorable outcome, independently of the ratio. NK NPM1+/FLT3-TKD+ genotype tends to confer a good prognosis in patients treated intensively. Regarding minimal residual disease prognostic value, overall survival was significantly better for patients achieving a 4 log NPM1 reduction (median OS: 24.4 vs. 12.8 months, p = 0.013) but did not reach statistical significance for progression free survival. This retrospective study highlights that intensive chemotherapy may not be the most appropriate option for each elderly patient and that molecular markers may help treatment intensity decision-making.


2019 ◽  
Vol 20 (18) ◽  
pp. 4576 ◽  
Author(s):  
Xianwen Yang ◽  
Molly Pui Man Wong ◽  
Ray Kit Ng

Acute myeloid leukemia (AML) is a heterogeneous disease that is characterized by distinct cytogenetic or genetic abnormalities. Recent discoveries in cancer epigenetics demonstrated a critical role of epigenetic dysregulation in AML pathogenesis. Unlike genetic alterations, the reversible nature of epigenetic modifications is therapeutically attractive in cancer therapy. DNA methylation is an epigenetic modification that regulates gene expression and plays a pivotal role in mammalian development including hematopoiesis. DNA methyltransferases (DNMTs) and Ten-eleven-translocation (TET) dioxygenases are responsible for the dynamics of DNA methylation. Genetic alterations of DNMTs or TETs disrupt normal hematopoiesis and subsequently result in hematological malignancies. Emerging evidence reveals that the dysregulation of DNA methylation is a key event for AML initiation and progression. Importantly, aberrant DNA methylation is regarded as a hallmark of AML, which is heralded as a powerful epigenetic marker in early diagnosis, prognostic prediction, and therapeutic decision-making. In this review, we summarize the current knowledge of DNA methylation in normal hematopoiesis and AML pathogenesis. We also discuss the clinical implications of DNA methylation and the current therapeutic strategies of targeting DNA methylation in AML therapy.


Sign in / Sign up

Export Citation Format

Share Document