scholarly journals Genetic Alterations and Their Clinical Implications in Acute Myeloid Leukemia

Author(s):  
Hsin-An Hou ◽  
Wen-Chien Chou ◽  
Hwei-Fang Tie
Leukemia ◽  
2016 ◽  
Vol 30 (7) ◽  
pp. 1485-1492 ◽  
Author(s):  
C-H Tsai ◽  
H-A Hou ◽  
J-L Tang ◽  
C-Y Liu ◽  
C-C Lin ◽  
...  

2019 ◽  
Vol 20 (18) ◽  
pp. 4576 ◽  
Author(s):  
Xianwen Yang ◽  
Molly Pui Man Wong ◽  
Ray Kit Ng

Acute myeloid leukemia (AML) is a heterogeneous disease that is characterized by distinct cytogenetic or genetic abnormalities. Recent discoveries in cancer epigenetics demonstrated a critical role of epigenetic dysregulation in AML pathogenesis. Unlike genetic alterations, the reversible nature of epigenetic modifications is therapeutically attractive in cancer therapy. DNA methylation is an epigenetic modification that regulates gene expression and plays a pivotal role in mammalian development including hematopoiesis. DNA methyltransferases (DNMTs) and Ten-eleven-translocation (TET) dioxygenases are responsible for the dynamics of DNA methylation. Genetic alterations of DNMTs or TETs disrupt normal hematopoiesis and subsequently result in hematological malignancies. Emerging evidence reveals that the dysregulation of DNA methylation is a key event for AML initiation and progression. Importantly, aberrant DNA methylation is regarded as a hallmark of AML, which is heralded as a powerful epigenetic marker in early diagnosis, prognostic prediction, and therapeutic decision-making. In this review, we summarize the current knowledge of DNA methylation in normal hematopoiesis and AML pathogenesis. We also discuss the clinical implications of DNA methylation and the current therapeutic strategies of targeting DNA methylation in AML therapy.


2011 ◽  
Vol 29 (5) ◽  
pp. 475-486 ◽  
Author(s):  
Guido Marcucci ◽  
Torsten Haferlach ◽  
Hartmut Döhner

Molecular analyses of leukemic blasts from patients with acute myeloid leukemia (AML) have revealed a striking heterogeneity with regard to the presence of acquired gene mutations and changes in gene and microRNA expression. Multiple submicroscopic genetic alterations with prognostic significance have been discovered. Application of gene- and microRNA profiling has identified genome-wide expression signatures that separate cytogenetic and molecular subsets of patients with AML into previously unrecognized biologic and/or prognostic subgroups. These and similar future findings are likely to have a major impact on the clinical management of AML because many of the identified genetic alterations not only represent independent prognosticators, but also may constitute targets for specific therapeutic intervention. In this report, we review genetic findings in AML and discuss their clinical implications.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 186
Author(s):  
Marcus Bauer ◽  
Christoforos Vaxevanis ◽  
Haifa Kathrin Al-Ali ◽  
Nadja Jaekel ◽  
Christin Le Hoa Naumann ◽  
...  

Background: Myelodysplastic syndromes (MDS) are caused by a stem cell failure and often include a dysfunction of the immune system. However, the relationship between spatial immune cell distribution within the bone marrow (BM), in relation to genetic features and the course of disease has not been analyzed in detail. Methods: Histotopography of immune cell subpopulations and their spatial distribution to CD34+ hematopoietic cells was determined by multispectral imaging (MSI) in 147 BM biopsies (BMB) from patients with MDS, secondary acute myeloid leukemia (sAML), and controls. Results: In MDS and sAML samples, a high inter-tumoral immune cell heterogeneity in spatial proximity to CD34+ blasts was found that was independent of genetic alterations, but correlated to blast counts. In controls, no CD8+ and FOXP3+ T cells and only single MUM1p+ B/plasma cells were detected in an area of ≤10 μm to CD34+ HSPC. Conclusions: CD8+ and FOXP3+ T cells are regularly seen in the 10 μm area around CD34+ blasts in MDS/sAML regardless of the course of the disease but lack in the surrounding of CD34+ HSPC in control samples. In addition, the frequencies of immune cell subsets in MDS and sAML BMB differ when compared to control BMB providing novel insights in immune deregulation.


Author(s):  
Edit Porpaczy ◽  
Wolfgang R. Sperr ◽  
Renate Thalhammer ◽  
Gerlinde Mitterbauer-Hohendanner ◽  
Leonhard Müllauer ◽  
...  

AbstractMixed phenotype acute leukemia (MPAL) is an uncommon disease characterized by currently only limited knowledge concerning biology, clinical presentation, and treatment outcome. We here describe a most unusual case of simultaneous occurrence of T-lymphoblastic lymphoma in cervical and mediastinal lymph nodes and acute myeloid leukemia in the bone marrow (BM) successfully treated with allogeneic stem cell transplantation (SCT). Although the blasts in both locations showed additional aberrant expression of other lineage markers (even B-cell markers), diagnostic criteria of MPAL were not fulfilled either in the LN or in the BM. We performed next generation sequencing (NGS) with the objective to look for common genetic aberrations in both tissues. Histology, immunohistochemistry, flow cytometry, AML-associated genetic alterations (FLT3, NPM1, KIT D816V, CEPBA), and clonal T-cell receptor β and γ gene rearrangements were performed according to routine diagnostic workflows. Next generation sequencing and Sanger sequencing were additionally performed in BM and LN. Somatic mutation in the EZH2 gene (p.(Arg684Cys)) was detected in the BM by NGS, and the same mutation was found in the LN. Since an identical genetic aberration (EZH2 mutation) was detected in both locations, a common progenitor with regional dependent differentiation may be involved.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4956-4956
Author(s):  
Cheng-Hong Tsai ◽  
Hsin-An Hou ◽  
Wen-Chien Chou ◽  
Chien-Chin Lin ◽  
Chien-Yuan Chen ◽  
...  

Abstract Introduction Risk-stratification of patients with acute myeloid leukemia (AML) can not only improve treatment response, but also reduce side effects of the treatment, especially in the elderly. A number of patient-specific and leukemia-associated factors are related to the poor outcome in older patients with AML. However, comprehensive studies regarding the impact of genetic alterations in this group of patients are limited. Methods and Materials A total of 500 adult patients with newly diagnosed de novo AML who had enough bone marrow cryopreserved cells for analysis at the National Taiwan University Hospital were enrolled consecutively. We compared the clinico-biological features, cytogenetics and molecular gene mutations between patients aged 60 years or older (n=185) and those younger (<60 years, n=315). Result Among older patients, those received standard intensive chemotherapy had a longer overall survival (OS) than those treated with palliative care. Compared with younger patients, the elderly had a higher incidence of poor-risk cytogenetic changes, but a lower frequency of favorable-risk cytogenetics. The median number of molecular gene mutations at diagnosis was higher in the elderly than the younger. Older patients had significantly higher incidences of PTPN11, NPM1, RUNX1, ASXL1, TET2, DNMT3A, and P53 mutations but a lower frequency of WT1 mutations. In multivariate analysis for OS among the elderly who received standard intensive chemotherapy, high WBC >50,000/μL at diagnosis, RUNX1 mutations, DNMT3A mutations, and P53 mutations were independent worse prognostic factors, while the presence of NPM1 mutations in the abcence of FLT3/ITD mutations was an independent good prognostic factor. The frequency of acquiring one or more adverse genetic alterations was much higher in older patients than younger ones. Further, the pattern of gene mutations could divide older patients with intermediate cytogenetics into three groups with significantly different complete remission rates, OS, and disease-free survival. Conclusion Older AML patients frequently harbored high-risk cytogenetics and gene mutations, and had poorer prognosis. Integration of cytogenetics and molecular alterations could risk-stratify older patients into groups with significant different outcomes. For those patients with poor prognosis under current chemotherapy, novel therapies, such as demethylating agents or other targeted therapies may be indicated. Disclosures Tang: Novartis: Consultancy, Honoraria.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5228-5228
Author(s):  
Genki Yamato ◽  
Hiroki Yamaguchi ◽  
Hiroshi Handa ◽  
Norio Shiba ◽  
Satoshi Wakita ◽  
...  

Abstract Background Acute myeloid leukemia (AML) is a complex disease caused by various genetic alterations. Some prognosis-associated cytogenetic aberrations or gene mutations such as FLT3-internal tandem duplication (ITD), t(8;21)(q22;q22)/RUNX1-RUNX1T1, and inv(16)(p13q22)/CBFB-MYH11 have been found and used to stratify the risk. Numerous gene mutations have been implicated in the pathogenesis of AML, including mutations of DNMT3A, IDH1/2, TET2 and EZH2 in addition to RAS, KIT, NPM1, CEBPA and FLT3in the recent development of massively parallel sequencing technologies. However, even after incorporating these molecular markers, the prognosis is unclear in a subset of AML patients. Recently, NUP98-NSD1 fusion gene was identified as a poor prognostic factor for AML. We have reported that all pediatric AML patients with NUP98-NSD1 fusion showed high expression of the PR domain containing 16 (PRDM16; also known as MEL1) gene, which is a zinc finger transcription factor located near the breakpoint at 1p36. PRDM16 is highly homologous to MDS1/EVI1, which is an alternatively spliced transcript of EVI1. Furthermore, PRDM16 is essential for hematopoietic stem cell maintenance and remarkable as a candidate gene to induce leukemogenesis. Recent reports revealed that high PRDM16 expression was a significant marker to predict poor prognosis in pediatric AML. However, the significance of PRDM16 expression is unclear in adult AML patients. Methods A total of 151 adult AML patients (136 patients with de novo AML and 15 patients with relapsed AML) were analyzed. They were referred to our institution between 2004 and 2015 and our collaborating center between 1996 and 2013. The median length of follow-up for censored patients was 30.6 months. Quantitative RT-PCR analysis was performed using the 7900HT Fast Real Time PCR System with TaqMan Gene Expression Master Mix and TaqMan Gene Expression Assay. In addition to PRDM16, ABL1 was also evaluated as a control gene. We investigated the correlations between PRDM16 gene expression and other genetic alterations, such as FLT3-ITD, NPM1, and DNMT3A, and clarified the prognostic impact of PRDM16 expression in adult AML patients. Mutation analyses were performed by direct sequence analysis, Mutation Biased PCR, and the next-generation sequencer Ion PGM. Results PRDM16 overexpression was identified in 29% (44/151) of adult AML patients. High PRDM16 expression correlated with higher white blood cell counts in peripheral blood and higher blast ratio in bone marrow at diagnosis; higher coincidence of mutation in NPM1 (P = 0.003) and DNMT3A (P = 0.009); and lower coincidence of t(8;21) (P = 0.010), low-risk group (P = 0.008), and mutation in BCOR (P = 0.049). Conversely, there were no significant differences in age at diagnosis and sex distribution. Patients with high PRDM16 expression tended to be low frequency in M2 (P = 0.081) subtype, and the remaining subtype had no significant differences between high and low PRDM16 expression. Remarkably, PRDM16 overexpression patients were frequently observed in non-complete remission (55.8% vs. 26.3%, P = 0.001). Patients with high PRDM16 expression tended to have a cumulative incidence of FLT3-ITD (37% vs. 21%, P = 0.089) and MLL-PTD (15% vs. 5%, P = 0.121). We analyzed the prognosis of 139 patients who were traceable. The overall survival (OS) and median survival time (MST) of patients with high PRDM16 expression were significantly worse than those of patients with low expression (5-year OS, 17% vs. 32%; MST, 287 days vs. 673 days; P = 0.004). This trend was also significant among patients aged <65 years (5-year OS, 25% vs. 48%; MST, 361 days vs. 1565 days, P = 0.013). Moreover, high PRDM16 expression was a significant prognostic factor for FLT3-ITD negative patients aged < 65 years in the intermediate cytogenetic risk group (5-year OS, 29% vs. 58%; MST, 215 days vs. undefined; P = 0.032). Conclusions We investigated the correlations among PRDM16 expression, clinical features, and other genetic alterations to reveal clinical and prognostic significance. High PRDM16 expression was independently associated with non-CR and adverse outcomes in adult AML patients, as well as pediatric AML patients. Our finding indicated that the same pathogenesis may exist in both adult and pediatric AML patients with respect to PRDM16 expression, and measuring PRDM16 expression was a powerful tool to predict the prognosis of adult AML patients. Disclosures Inokuchi: Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria; Celgene: Honoraria; Pfizer: Honoraria.


2020 ◽  
Vol 29 (3) ◽  
pp. 387-397
Author(s):  
Yangli Zhao ◽  
Tingjuan Zhang ◽  
Yangjing Zhao ◽  
Jingdong Zhou

BACKGROUND: The runt-related transcription factor family (RUNXs) including RUNX1, RUNX2, and RUNX3 are key transcriptional regulators in normal hematopoiesis. RUNXs dysregulations caused by aberrant expression or mutation are frequently seen in various human cancers especially in acute myeloid leukemia (AML). OBJECTIVE: We systemically analyzed the expression of RUNXs and their relationship with clinic-pathological features and prognosis in AML patients. METHODS: Expression of RUNXs was analyzed between AML patients and normal controls from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) projects. Correlations between RUNXs expression and clinical features together with survival were further analyzed. RESULTS: All RUNXs expression in AML patients was significantly increased as compared with controls. RUNXs expression was found to be significantly associated with genetic abnormalities such as RUNX1 mutation, t(8;21) and inv(16)/t(16;16). By Kaplan-Meier analysis, only RUNX3 overexpression was associated with shorter overall survival (OS) and disease-free survival (DFS) among non-M3 AML patients. Notably, in high RUNX3 expression groups, patients received hematopoietic stem cell transplantation (HSCT) had markedly better OS and DFS than patients without HSCT among both all AML and non-M3 AML. In low RUNX3 expression groups, there were no significant differences in OS and DFS between HSCT and non-HSCT groups among both all AML and non-M3 AML. In addition, a total of 835 differentially expressed genes and 69 differentially expressed microRNAs were identified to be correlated with RUNX3 expression in AML. CONCLUSION: RUNXs overexpression was a frequent event in AML, and was closely associated with diverse genetic alterations. Moreover, RUNX3 expression may be associated with clinical outcome, and helpful for guiding treatment choice between HSCT and chemotherapy in AML.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hajime Senjo ◽  
Masahiro Onozawa ◽  
Daisuke Hidaka ◽  
Shota Yokoyama ◽  
Satoshi Yamamoto ◽  
...  

Abstract Elderly patients aged 65 or older with acute myeloid leukemia (AML) have poor prognosis. The risk stratification based on genetic alteration has been proposed in national comprehensive cancer network (NCCN) guideline but its efficacy was not well verified especially in real world elderly patients. The nutritional status assessment using controlling nutritional status (CONUT) score is a prognostic biomarker in elderly patients with solid tumors but was not examined in elderly AML patients. We performed prospective analysis of genetic alterations of 174 patients aged 65 or older with newly diagnosed AML treated without hematopoietic stem cell transplantation (HSCT) and developed simplified CONUT (sCONUT) score by eliminating total lymphocyte count from the items to adapt AML patients. In this cohort, both the NCCN 2017 risk group and sCONUT score successfully stratified the overall survival (OS) of the elderly patients. A multivariable analysis demonstrated that adverse group in NCCN 2017 and high sCONUT score were independently associated with poor 2-year OS. Both risk stratification based on NCCN 2017 and sCONUT score predict prognosis in the elderly patients with newly diagnosed AML.


Sign in / Sign up

Export Citation Format

Share Document