Monitoring of plasma pro-GRP level during EGFR-TKI treatment.

2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 10604-10604
Author(s):  
Yuko Kawano ◽  
Atsushi Horiike ◽  
Azusa Tanimoto ◽  
Toshio Sakatani ◽  
Ryota Saito ◽  
...  

10604 Background: Lung cancers harboring mutations in the epidermal growth factor receptor gene (EGFR) respond to EGFR tyrosine kinase inhibitors (EGFR-TKI), but drug resistance invariably emerges. The major acquired mechanisms of resistance are the EGFR T790M mutation or MET gene amplification. Transformation from NSCLC into small-cell lung cancer (SCLC) has been recently identified in acquired resistance to EGFR-TKI. However, it is difficult to predict the transformation during EGFR-TKI treatment because obtaining serial and sufficient specimens for biopsy is difficult. Pro-gastrin-releasing peptide (Pro-GRP) is a specific and sensitive tumor marker for SCLC. We evaluated the plasma Pro-GRP levels in EGFR-mutant NSCLCs and determined whether plasma Pro-GRP levels could predict SCLC transformation in resistance to EGFR-TKI. Methods: From July 2008 to December 2011, 49 patients with EGFR-mutant NSCLC who received EGFR-TKI treatment were enrolled. Plasma was obtained from these patients before EGFR-TKI treatment and when EGFR-TKI treatment failed. Pro-GRP and CEA levels were measured and compared before and after treatment. Results: Patient characteristics for 49 patients (15 men, 34 women) were as follows: median age, 62 years (41–81 years); histology, 46 adenocarcinomas (AD) and 3 non-AD tumors; and EGFR mutation type, 25 exon 19 deletions and 24 exon 21 L858R. All 49 patients had received EGFR-TKI treatment (45 with gefitinib and 4 with erlotinib); the response to EGFR-TKI treatment was PR in 39 patients, SD in 7, PD in 2, and NE in 1. Positive rate of ProGRP and CEA at pre-EGFR-TKI treatment was 2.0% and 57.2% and that at post-EGFR-TKI treatment was 6.1% and 69.4%, respectively. In 3 of 49 patients, the Pro-GRP levels had increased after treatment, but the CEA level did not increase. Objective responses to cytotoxic chemotherapy were noted in all 3 patients after EGFR-TKI treatment. Conclusions: Monitoring of plasma Pro-GRP during EGFR-TKI treatment may be useful for early detection of SCLC transformation in resistance to EGFR-TKI.

2019 ◽  
Vol 12 (2) ◽  
pp. 625-630 ◽  
Author(s):  
Mike Ralki ◽  
Brigitte Maes ◽  
Karin Pat ◽  
Jokke Wynants ◽  
Kristof Cuppens

Epidermal growth factor receptor (EGFR)-targeted therapy has become standard of care in advanced stages EGFR-mutant non-small cell lung cancer. Acquired resistance to first-line EGFR-tyrosine kinase inhibitor (TKI) and subsequent disease progression is a common problem and mostly due to a secondary mutation (T790M) in EGFR. We report a case of a patient with EGFR-mutated lung adenocarcinoma who developed a complex resistance profile: T790M mutation, HER2 mutation and HER2 amplification after first-line EGFR-TKI. This patient was safely treated with a combination of osimertinib and trastuzumab and achieved a clinically meaningful and clear molecular response.This is the first reported case of acquired resistance to first-line EGFR-TKI based on three resistance mechanisms, treated with molecular targeted combination therapy.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e20545-e20545 ◽  
Author(s):  
Chul Kim ◽  
Nitin Roper ◽  
Chuong D. Hoang ◽  
Eva Szabo ◽  
Maureen Connolly ◽  
...  

e20545 Background: EGFR tyrosine kinase inhibitors (EGFR-TKIs) improve progression-free survival (PFS) in patients with EGFR-mutant NSCLC, but disease progression limits efficacy. Retrospective studies show a survival benefit to LAT in patients with oligoprogressive disease (progression at a limited number of anatomic sites). Methods: This is a prospective study of LAT in patients with oligoprogressive EGFR-mutant NSCLC. Patients with no prior EGFR-TKI therapy (cohort 1) or progression after 1st/2ndgeneration EGFR-TKIs with acquired T790M mutation (cohort 2) receive osimertinib. Upon progression, eligible patients with < = 5 progressing sites undergo LAT and resume osimertinib until disease progression. Patients previously treated with osimertinib qualifying for LAT upon disease progression are also eligible for treatment (cohort 3). Primary endpoint: evaluation of safety and efficacy of reinitiation of osimertinib after LAT (assessed by PFS). Additional goals are assessment of mechanisms of resistance to osimertinib by multi-omics analyses of tumor, blood, and saliva. Results: Between 04/2016 and 01/2017, 15 patients were enrolled (cohort 1: 9, cohort 2: 3, cohort 3: 3). Median age was 57 (range 36-71). Treatment was well tolerated. The most common adverse events (AEs) were rash, diarrhea, thrombocytopenia, and alanine transaminase elevation. Grade 3/4 AEs were observed in 4 (27%) patients. Among evaluable patients, objective response rates prior to LAT in cohorts 1 and 2 were 71% (5/7) and 100% (2/2), respectively, with 6.8 months median PFS (95% CI: 3.4 months-undefined) in cohort 1 and no progressions in cohort 2. To date, 5 patients (33%; cohort 1: 2; cohort 3: 3) had LAT. Two patients with 3 progressing sites underwent a combination of surgery and radiation. Three patients with 1 progressing site underwent surgery alone. Post-LAT PFS and results of molecular analyses will be presented. Conclusions: Patients with EGFR-mutant NSCLC and oligoprogression after EGFR-TKI therapy can be safely treated with LAT. In selected patients, this approach could potentially maximize duration of EGFR-TKI treatment and prevent premature switching to other systemic therapies. Clinical trial information: NCT02759835.


2019 ◽  
pp. 1-14 ◽  
Author(s):  
Sebastian Michels ◽  
Carina Heydt ◽  
Bianca van Veggel ◽  
Barbara Deschler-Baier ◽  
Nuria Pardo ◽  
...  

PURPOSE Third-generation epidermal growth factor receptor ( EGFR) tyrosine kinase inhibitors (TKIs) are effective in acquired resistance (AR) to early-generation EGFR TKIs in EGFR-mutant lung cancer. However, efficacy is marked by interindividual heterogeneity. We present the molecular profiles of pretreatment and post-treatment samples from patients treated with third-generation EGFR TKIs and their impact on treatment outcomes. METHODS Using the databases of two lung cancer networks and two lung cancer centers, we molecularly characterized 124 patients with EGFR p.T790M-positive AR to early-generation EGFR TKIs. In 56 patients, correlative analyses of third-generation EGFR TKI treatment outcomes and molecular characteristics were feasible. In addition, matched post-treatment biopsy samples were collected for 29 patients with progression to third-generation EGFR TKIs. RESULTS Co-occurring genetic aberrations were found in 74.4% of EGFR p.T790-positive samples (n = 124). Mutations in TP53 were the most frequent aberrations detected (44.5%; n = 53) and had no significant impact on third-generation EGFR TKI treatment. Mesenchymal-epithelial transition factor ( MET) amplifications were found in 5% of samples (n = 6) and reduced efficacy of third-generation EGFR TKIs significantly (eg, median progression-free survival, 1.0 months; 95% CI, 0.37 to 1.72 v 8.2 months; 95% CI, 1.69 to 14.77 months; P ≤ .001). Genetic changes in the 29 samples with AR to third-generation EGFR TKIs were found in EGFR (eg, p.T790M loss, acquisition of p.C797S or p.G724S) or in other genes (eg, MET amplification, KRAS mutations). CONCLUSION Additional genetic aberrations are frequent in EGFR-mutant lung cancer and may mediate innate and AR to third-generation EGFR TKIs. MET amplification was strongly associated with primary treatment failure and was a common mechanism of AR to third-generation EGFR TKIs. Thus, combining EGFR inhibitors with TKIs targeting common mechanisms of resistance may delay AR.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3096
Author(s):  
Beung-Chul Ahn ◽  
Ji Hyun Lee ◽  
Min Hwan Kim ◽  
Kyoung-Ho Pyo ◽  
Choong-kun Lee ◽  
...  

Objectives: Patients with epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) ultimately acquire resistance to EGFR tyrosine kinase inhibitors (TKIs) during treatment. In 5–22% of these patients, resistance is mediated by aberrant mesenchymal epithelial transition factor (MET) gene amplification. Here, we evaluated the emergence of MET amplification after EGFR-TKI treatment failure based on clinical parameters. Materials and Methods: We retrospectively analyzed 186 patients with advanced EGFR-mutant NSCLC for MET amplification status by in situ hybridization (ISH) assay after EGFR-TKI failure. We collected information including baseline patient characteristics, metastatic locations and generation, line, and progression-free survival (PFS) of EGFR-TKI used before MET evaluation. Multivariate logistic regression analysis was conducted to evaluate associations between MET amplification status and clinical variables. Results: Regarding baseline EGFR mutations, exon 19 deletion was predominant (57.5%), followed by L858R mutation (37.1%). The proportions of MET ISH assays performed after first/second-generation and third-generation TKI failure were 66.7% and 33.1%, respectively. The median PFS for the most recent EGFR-TKI treatment was shorter in MET amplification-positive patients than in MET amplification-negative patients (median PFS 7.0 vs. 10.4 months, p = 0.004). Multivariate logistic regression demonstrated that a history of smoking, short PFS on the most recent TKI, and less intracranial progression were associated with a high probability of MET amplification (all p < 0.05). Conclusions: Our results demonstrated the distinct clinical characteristics of patients with MET amplification-positive NSCLC after EGFR-TKI therapy. Our clinical prediction can aid physicians in selecting patients eligible for MET amplification screening and therapeutic targeting.


Oncogene ◽  
2021 ◽  
Author(s):  
Chia-Hung Chen ◽  
Bo-Wei Wang ◽  
Yu-Chun Hsiao ◽  
Chun-Yi Wu ◽  
Fang-Ju Cheng ◽  
...  

AbstractThe tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) have been widely used for non-small cell lung cancer (NSCLC) patients, but the development of acquired resistance remains a therapeutic hurdle. The reduction of glucose uptake has been implicated in the anti-tumor activity of EGFR TKIs. In this study, the upregulation of the active sodium/glucose co-transporter 1 (SGLT1) was found to confer the development of acquired EGFR TKI resistance and was correlated with the poorer clinical outcome of the NSCLC patients who received EGFR TKI treatment. Blockade of SGLT1 overcame this resistance in vitro and in vivo by reducing glucose uptake in NSCLC cells. Mechanistically, SGLT1 protein was stabilized through the interaction with PKCδ-phosphorylated (Thr678) EGFR in the TKI-resistant cells. Our findings revealed that PKCδ/EGFR axis-dependent SGLT1 upregulation was a critical mechanism underlying the acquired resistance to EGFR TKIs. We suggest co-targeting PKCδ/SGLT1 as a potential strategy to improve the therapeutic efficacy of EGFR TKIs in NSCLC patients.


Cells ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 212 ◽  
Author(s):  
Tatsuya Nagano ◽  
Motoko Tachihara ◽  
Yoshihiro Nishimura

Treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) improves the overall survival of patients with EGFR-mutated non-small-cell lung cancer (NSCLC). First-generation EGFR-TKIs (e.g., gefitinib and erlotinib) or second-generation EGFR-TKIs (e.g., afatinib and dacomitinib) are effective for the treatment of EGFR-mutated NSCLC, especially in patients with EGFR exon 19 deletions or an exon 21 L858R mutation. However, almost all cases experience disease recurrence after 1 to 2 years due to acquired resistance. The EGFR T790M mutation in exon 20 is the most frequent alteration associated with the development of acquired resistance. Osimertinib—a third-generation EGFR-TKI—targets the T790M mutation and has demonstrated high efficacy against EGFR-mutated lung cancer. However, the development of acquired resistance to third-generation EGFR-TKI, involving the cysteine residue at codon 797 mutation, has been observed. Other mechanisms of acquired resistance include the activation of alternative pathways or downstream targets and histological transformation (i.e., epithelial–mesenchymal transition or conversion to small-cell lung cancer). Furthermore, the development of primary resistance through overexpression of the hepatocyte growth factor and suppression of Bcl-2-like protein 11 expression may lead to problems. In this report, we review these mechanisms and discuss therapeutic strategies to overcome resistance to EGFR-TKIs.


2020 ◽  
Author(s):  
Qiwei Wang ◽  
Jing Ni ◽  
Tao Jiang ◽  
Hwan Geun Choi ◽  
Tinghu Zhang ◽  
...  

AbstractEpidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have provided successful targeted therapies for patients with EGFR-mutant non-small-cell lung cancer (NSCLC). Osimertinib (AZD9291) is a third-generation irreversible EGFR TKI that has received regulatory approval for overcoming resistance mediated by the EGFR T790M mutation as well as a first-line treatment targeting EGFR activating mutations. However, a significant fraction of patients cannot tolerate the adverse effect associated with AZD9291. In addition, brain metastases are common in patients with NSCLN and remain a major clinical challenge. Here, we report the development of a novel third-generation EGFR TKI, CM93. Compared to AZD9291, CM93 exhibits improved lung cancer targeting and brain penetration and has demonstrated promising antitumor efficacy in mouse models of both EGFR-mutant NSCLC orthotopic and brain metastases. In addition, we find that CM93 confers superior safety benefits in mice. Our results demonstrate that further evaluations of CM93 in clinical studies for patients with EGFR-mutant NSCLC and brain metastases are warranted.


2020 ◽  
Author(s):  
Chirag Dhar

Background: Lung cancer is among the leading causes of mortality. Nearly 90% of all lung cancers are histologically classified as non-small cell lung cancer (NSCLC). A subset of these tumors harbor mutations on the epidermal growth factor receptor gene (EGFR) and such patients are candidates for targeted therapy with EGFR tyrosine kinase inhibitors (EGFR TKIs). Aim: To compare and contrast the clinicogenomic characteristics of EGFR mutant and wildtype NSCLC. Methods and results: A retrospective cohort study design was used to analyze publicly available data on cBioPortal.org. Patients with EGFR mutations were more likely to be, female; of Asian ethnicity; never-smokers and diagnosed with lung adenocarcinoma. Metastasis to, the pleura; pleural fluid and liver were common in patients with EGFR mutant NSCLC. On the other hand, lymph node, brain and adrenal gland metastases were more common in patients with other mutations. While the median overall survival was about the same in the two groups, progression free survival was significantly shorter in the EGFR mutant group. The mutational landscape was significantly different in the two groups with EGFR mutant NSCLCs having a lower mutational burden. Differences in copy number alterations between the two groups were also noted. Conclusions: The clinicogenomic profiles of EGFR mutant and wildtype significantly differ. Further studies on these differences and underlying mechanisms are likely to lead to new druggable targets that overcome EGFR TKI resistance.


Sign in / Sign up

Export Citation Format

Share Document