The prognostic value of β-catenin and LEF-1 expression in patients with gastric carcinoma.

2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e14618-e14618
Author(s):  
Serap Kaya ◽  
Mahmut Gumus ◽  
Yesim Gurbuz ◽  
Suleyman Temiz ◽  
Devrim Cabuk ◽  
...  

e14618 Background: Wnt signal transduction pathway plays an important role in carcinogenesis. Wnt signal transduction pathway is a key component of the β-catenin-TCF / LEF family of transcription factors interact with and activate the transcription of Wnt target genes. The aim of this study is to evaluate the prognostic value of β-katenin and LEF-1 expression in patients with operable gastric cancer and the relationship between demographic and histopathological variables. Methods: In this study, 82 gastric cancer patients treated with adjuvant treatment after operation and followed in Oncology Department between 2006-2010 were included. β-katenin and LEF-1 expression were examined by immunuhistochemical analysis in paraffin embedded tumor tissues of the patients. Results: In this study, median age was 56 (26-81) years and median follow up was 19 (4-61) months. Performance status (ECOG PS) were 0-1 in all patients. Men/women ratio was 53/29 (64.6/35.4%). Median disease free survival (DFS) time was 17 months (SE:3 95% CI: 11-23) in 19 months of follow up. 3 years DFS rate was 39.7%. In all patients group, median overall survival (OS) time was 28 months (SE:4 95% CI: 20-36) and 3 years OS rate was 41,2%. There was no statistical correlation between β-catenin and LEF-1 expression and age, gender, performance status, tumor localization, T and N stage, lymphovascular, perinoral invasion, grade and operation type (>0.05). In addition, there was also no correlation between β-catenin and LEF-1 expression. According to univariate analysis, we did not find significant effect on age, gender, T stage, lymphovascular, perinoral invasion, grade and operation type on overall survival (p>0.05). Good performans status (ECOG 0), tumor infiltration without diffuse type like linitis plastica, and lower N stage had positive effect on survival (p=0.04, 0.033 and 0.005, respectively). In multivariate cox regression analysis, only N stage was found as an independent prognostic factor (p<0.05). Conclusions: In this study group, we found that the only N stage as an independent prognostic factor. Demographic features of the patients, histopathological characteristics other than N stage, β-catenin and LEF-1 prognostic effects have not been shown.

FEBS Letters ◽  
2002 ◽  
Vol 530 (1-3) ◽  
pp. 59-64 ◽  
Author(s):  
Yasunori Kadowaki ◽  
Shunji Ishihara ◽  
Youichi Miyaoka ◽  
Mohammed Azharul Karim Rumi ◽  
Hiroshi Sato ◽  
...  

2007 ◽  
Vol 178 (3) ◽  
pp. 355-361 ◽  
Author(s):  
Karni Schlessinger ◽  
Edward J. McManus ◽  
Alan Hall

Scratch-induced disruption of cultured monolayers induces polarity in front row cells that can be visualized by spatially localized polymerization of actin at the front of the cell and reorientation of the centrosome/Golgi to face the leading edge. We previously reported that centrosomal reorientation and microtubule polarization depend on a Cdc42-regulated signal transduction pathway involving activation of the Par6/aPKC complex followed by inhibition of GSK-3β and accumulation of the adenomatous polyposis coli (APC) protein at the plus ends of leading-edge microtubules. Using monolayers of primary rodent embryo fibroblasts, we show here that dishevelled (Dvl) and axin, two major components of the Wnt signaling pathway are required for centrosome reorientation and that Wnt5a is required for activation of this pathway. We conclude that disruption of cell–cell contacts leads to the activation of a noncanonical Wnt/dishevelled signal transduction pathway that cooperates with Cdc42/Par6/aPKC to promote polarized reorganization of the microtubule cytoskeleton.


Development ◽  
1995 ◽  
Vol 121 (6) ◽  
pp. 1637-1647 ◽  
Author(s):  
S.Y. Sokol ◽  
J. Klingensmith ◽  
N. Perrimon ◽  
K. Itoh

Signaling factors of the Wnt proto-oncogene family are implicated in dorsal axis formation during vertebrate development, but the molecular mechanism of this process is not known. Studies in Drosophila have indicated that the dishevelled gene product is required for wingless (Wnt1 homolog) signal transduction. We demonstrate that injection of mRNA encoding a Xenopus homolog of dishevelled (Xdsh) into prospective ventral mesodermal cells triggers a complete dorsal axis formation in Xenopus embryos. Lineage tracing experiments show that cells derived from the injected blastomere contribute to anterior and dorsal structures of the induced axis. In contrast to its effect on mesoderm, overexpression of Xdsh mRNA in prospective ectodermal cells triggers anterior neural tissue differentiation. These studies suggest that Wnt signal transduction pathway is conserved between Drosophila and vertebrates and point to a role for maternal Xdsh product in dorsal axis formation and in neural induction.


Development ◽  
2002 ◽  
Vol 129 (17) ◽  
pp. 4089-4101 ◽  
Author(s):  
Tatyana Y. Belenkaya ◽  
Chun Han ◽  
Henrietta J. Standley ◽  
Xinda Lin ◽  
Douglas W. Houston ◽  
...  

The Wingless (Wg)/Wnt signal transduction pathway regulates many developmental processes through a complex of Armadillo(Arm)/β-catenin and the HMG-box transcription factors of the Tcf family. We report the identification of a new component, Pygopus (Pygo), that plays an essential role in the Wg/Wnt signal transduction pathway. We show that Wg signaling is diminished during embryogenesis and imaginal disc development in the absence of pygo activity. Pygo acts downstream or in parallel with Arm to regulate the nuclear function of Arm protein. pygo encodes a novel and evolutionarily conserved nuclear protein bearing a PHD finger that is essential for its activity. We further show that Pygo can form a complex with Arm in vivo and possesses a transcription activation domain(s). Finally, we have isolated a Xenopus homolog of pygo (Xpygo). Depletion of maternal Xpygo by antisense deoxyoligonucleotides leads to ventralized embryonic defects and a reduction of the expression of Wnt target genes. Together, these findings demonstrate that Pygo is an essential component in the Wg/Wnt signal transduction pathway and is likely to act as a transcription co-activator required for the nuclear function of Arm/β-catenin.


Sign in / Sign up

Export Citation Format

Share Document