Lisocabtagene maraleucel (liso-cel) treatment of patients (pts) with relapsed/refractory (R/R) B-cell non-Hodgkin lymphoma (NHL) and secondary CNS lymphoma: Initial results from TRANSCEND NHL 001.

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 7515-7515 ◽  
Author(s):  
Jeremy S. Abramson ◽  
Maria Lia Palomba ◽  
Jon E. Arnason ◽  
Matthew Alexander Lunning ◽  
Scott R. Solomon ◽  
...  

7515 Background: No clinical studies have yet evaluated CAR T cell therapies in pts with R/R B-cell NHL who have secondary CNS lymphoma. We report data from this pt subgroup receiving liso-cel (JCAR017), an investigational, anti-CD19 CAR T cell product administered as a defined composition of CD4+/CD8+ CAR T cells, in the phase 1 TRANSCEND NHL 001 study. Methods: Eligible pts had confirmed B-cell NHL with R/R disease after ≥2 prior lines of therapy. Pts with secondary CNS lymphoma could enroll or, if it developed on study, could continue to receive liso-cel. After lymphodepleting chemotherapy, liso-cel was administered at 1 of 2 dose levels (DL): DL1 = 50 × 106 or DL2 = 100 × 106 total CAR+ T cells. Efficacy was evaluated per the Lugano criteria. Pts achieving a complete response could be retreated with liso-cel upon progressive disease. Results: At data cutoff, 9 pts with secondary CNS lymphoma at initial treatment (n = 6), retreatment (n = 2), or cycle 2 (n = 1) received liso-cel. 4 pts were treated at DL1 and 5 at DL2. The median (range) age was 60 (47‒73) years and number of prior lines of therapy was 3 (2‒7). Median time to peak CAR+ T cell expansion was 12.5 (7–112) days. 1 of 9 pts had grade (G)2 cytokine release syndrome (CRS) and 1 of 9 pts had a neurological event (NE; G3 decreased level of consciousness). No retreatment pts had CRS or NE; however, 1 retreatment pt had an NE of G2 temporal edema with initial treatment with liso-cel. 5 pts received prophylactic levetiracetam. 1 pt received corticosteroids and tocilizumab. Other toxicities were predominantly cytopenias. There were no treatment-related deaths. 4 pts responded to liso-cel; all had a best response of complete response, of which 2 are ongoing at 270 and 545 days post-liso-cel. All 4 responses occurred after initial liso-cel treatment; no retreated pts responded. Conclusions: In the ongoing TRANSCEND NHL 001 study, liso-cel continues to demonstrate the ability to be safely delivered to pts with R/R B-cell NHL, including those with secondary CNS lymphoma, a population of pts with a highly unmet medical need. No excess NE was noted in this population. This cohort continues to be evaluated. Clinical trial information: NCT02631044.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4193-4193 ◽  
Author(s):  
Nirav N Shah ◽  
Fenlu Zhu ◽  
Carolyn Taylor ◽  
Dina Schneider ◽  
Winfried Krueger ◽  
...  

Abstract Background: CAR-T cell therapy directed against the CD19 antigen is a breakthrough treatment for patients (pts) with relapsed/refractory (R/R) B-cell NHL. Despite impressive outcomes, not all pts respond and many that respond still relapse. Affordability and accessibility are further considerations that limit current commercial models of CAR-T products. Commercial CAR-T manufacturing is complex, time consuming, and expensive with a supply chain starting at the treating center with apheresis of mononuclear cells, cryopreservation, and shipping to and from a centralized third-party manufacturing site. We addressed these limitations in a Phase 1 clinical trial evaluating a first-in-human bispecific tandem CAR-T cell directed against both CD19 and CD20 (CAR-20.19-T) antigens for pts with R/R B-cell NHL. Through dual targeting we hope to improve response rates and durability of response while limiting antigen escape. We eliminated third party shipping logistics utilizing the CliniMACS Prodigy, a compact tabletop device that allows for automated manufacturing of CAR-T cells within a GMP compliant environment within the hospital. Most materials and reagents used to produce the CAR-T cell product were single-sourced from the device manufacturer. Methods: Phase 1 (NCT03019055), single center, dose escalation + expansion study to demonstrate feasibility and safety of locally manufactured second generation 41BB + CD3z CAR-20.19-T cells via the CliniMACS Prodigy. Feasibility was measured by ability to generate a target CAR-20.19-T cell dose for a minimum of 75% of subjects. Safety was assessed by the presence of dose limiting toxicities (DLTs) through 28 days post-infusion. Dose was escalated in a 3+3 fashion with a starting dose of 2.5 x 10^5 cells/kg, a target DLT rate <33%, and a goal treatment dose of 2.5 x 10^6 cells/kg. Adults with R/R Diffuse Large B-cell Lymphoma (DLBCL), Follicular Lymphoma (FL), Mantle Cell Lymphoma (MCL) or Chronic Lymphocytic Leukemia (CLL) were eligible. CAR-T production was set for a 14-day manufacturing process. Day 8 in-process testing was performed to ensure quality and suitability of CAR-T cells for a potential fresh infusion. On Day 10, pts eligible for a fresh CAR-T infusion initiated lymphodepletion (LDP) chemotherapy with fludarabine 30 mg/m2 x 3 days and cyclophosphamide 500 mg/m2 x 1 day, and cells were administered after harvest on Day 14. Pts ineligible for fresh infusion received cryopreserved product and LDP was delayed accordingly. Results: 6 pts have been enrolled and treated with CAR-20.19-T cells: 3 pts at 2.5 x 10^5 cells/kg and 3 pts at 7.5 x 10^5 cells/kg. Median age was 53 years (48-62). Underlying disease was MCL in 3 pts, DLBCL in 2 pts, and CLL in 1 patient. Baseline data and prior treatments are listed in Table 1. CAR-T production was successful in all runs and all pts received their target dose. Three pts received fresh CAR-T cells and 3 pts received CAR-T cells after cryopreservation. To date there are no DLTs to report. No cases of Grade 3/4 cytokine release syndrome (CRS) or neurotoxicity (NTX) were observed. One patient had Grade 2 CRS and Grade 2 NTX requiring intervention. The other had self-limited Grade 1 CRS and Grade 1 NTX. Median time to development of CRS was Day +11 post-infusion. All pts had neutrophil recovery (ANC>0.5 K/µL) by Day 28. Response at Day 28 (Table 2) is as follows: 2/6 pts achieved a complete response (CR), 2/6 achieved a partial response (PR), and 2/6 had progressive disease (PD). One subject with a PR subsequently progressed at Day 90. The 3 pts who did progress all underwent a repeat biopsy, and all retained either CD19 or CD20 positivity. Pts are currently being enrolled at the target dose (2.5 x 10^6 cells/kg) and updated results will be provided at ASH. Conclusions: Dual targeted anti-CD19 and anti-CD20 CAR-T cells were successfully produced for all pts demonstrating the feasibility of a point-of-care manufacturing process via the CliniMACS Prodigy device. With no DLTs or Grade 3-4 CRS or NTX to report, and 2/6 heavily pre-treated pts remaining in CR at 3 and 9 months respectively our approach represents a feasible and promising alternative to existing CAR-T models and costs. Down-regulation of both target antigens was not identified in any patient following CAR-T infusion, and in-process studies suggest that a shorter manufacturing timeline is appropriate for future trials (10 days). Disclosures Shah: Juno Pharmaceuticals: Honoraria; Lentigen Technology: Research Funding; Oncosec: Equity Ownership; Miltenyi: Other: Travel funding, Research Funding; Geron: Equity Ownership; Exelexis: Equity Ownership. Zhu:Lentigen Technology Inc., A Miltenyi Biotec Company: Research Funding. Schneider:Lentigen Technology Inc., A Miltenyi Biotec Company: Employment. Krueger:Lentigen Technology Inc., A Miltenyi Biotec Company: Employment. Worden:Lentigen Technology Inc., A Miltenyi Biotec Company: Employment. Hamadani:Sanofi Genzyme: Research Funding, Speakers Bureau; Merck: Research Funding; Janssen: Consultancy; MedImmune: Consultancy, Research Funding; Cellerant: Consultancy; Celgene Corporation: Consultancy; Takeda: Research Funding; Ostuka: Research Funding; ADC Therapeutics: Research Funding. Johnson:Miltenyi: Research Funding. Dropulic:Lentigen, A Miltenyi Biotec company: Employment. Orentas:Lentigen Technology Inc., A Miltenyi Biotec Company: Other: Prior Employment. Hari:Takeda: Consultancy, Honoraria, Research Funding; Janssen: Honoraria; Kite Pharma: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Spectrum: Consultancy, Research Funding; Bristol-Myers Squibb: Consultancy, Research Funding; Amgen Inc.: Research Funding; Sanofi: Honoraria, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4075-4075 ◽  
Author(s):  
Tanya Siddiqi ◽  
Xiuli Wang ◽  
Joycelynne Palmer ◽  
Leslie L. Popplewell ◽  
Liana Nikolaenko ◽  
...  

Background: Prognosis is generally poor for patients (pts) with primary or secondary central nervous system (CNS) lymphoma. We report data from such patients treated on the ongoing Phase 1 trial investigating an autologous CD19 specific, hinge-optimized, CD28 costimulatory chimeric antigen receptor with a truncated eGFR for the treatment of B-cell non-Hodgkin lymphomas (NHL) at City of Hope National Medical Center. Methods: Eligible pts had confirmed B-cell NHL with relapsed/refractory (r/r) disease and patients with CNS lymphoma (history of or active at the time of enrollment) could enroll. After lymphodepleting chemotherapy, CD19-targeting CAR-T cells were administered at 1 of 2 dose levels (DL): DL1 = 200 million (M) cells and DL2 = 600M cells. All patients received levetiracetam for seizure prophylaxis. Results: At the time of data lock (06/2019), three (3) patients with primary CNS lymphoma and four (4) with secondary CNS lymphoma had received CAR-T cells. Five (5) pts were treated at DL1 and two (2) were treated at DL2.The median (range) age was 53.0 (47.0-70.8) years and median (range) number of prior lines of systemic therapy was 6 (4-12). No pts had grade (G) 3 or higher cytokine release syndrome (CRS) or neurological toxicities (NT). Two (2) pts received corticosteroids and three (3) pts received tocilizumab for CAR-T cell associated grade 1-2 NT and CRS respectively. Other toxicities were predominantly cytopenias related to the lymphodepleting chemotherapy. There were no treatment-related deaths. 4 pts had an objective response: 1 complete remission and 3 partial remissions. Representative peripheral blood and cerebrospinal fluid samples are shown in the Figure. Conclusions: In this ongoing City of Hope CAR-T cell trial targeting CD19 in patients with r/r B-cell NHL, promising results were seen in patients with primary and secondary CNS lymphoma, a population of pts with a high unmet medical need. No grade 3 or higher CRS or NT were noted. Expansion phase enrollment continues currently and an intraventricular route of CAR-T cell delivery will also be evaluated for potentially improved antitumor effects. Clinical trial information: NCT02153580. Figure Disclosures Siddiqi: Janssen: Speakers Bureau; Seattle Genetics: Speakers Bureau; BeiGene: Research Funding; Celgene: Research Funding; TG Therapeutics: Research Funding; Kite: Research Funding; Astra Zeneca: Consultancy, Other: Travel, Accommodations, Expenses, Research Funding, Speakers Bureau; Juno: Consultancy, Research Funding; Pharmacyclics LLC, an AbbVie company: Consultancy, Research Funding, Speakers Bureau. Palmer:Gilead Sciences: Consultancy. Popplewell:City of Hope: Employment. Herrera:Adaptive Biotechnologies: Consultancy; Bristol-Myers Squibb: Consultancy, Research Funding; Gilead Sciences: Consultancy, Research Funding; Seattle Genetics: Consultancy, Research Funding; AstraZeneca: Research Funding; Merck: Consultancy, Research Funding; Genentech, Inc.: Consultancy, Research Funding; Pharmacyclics: Research Funding; Immune Design: Research Funding; Kite Pharma: Consultancy, Research Funding. Budde:F. Hoffmann-La Roche Ltd: Consultancy. OffLabel Disclosure: City of Hope CAR-T cells are not FDA approved.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2503
Author(s):  
Philipp Karschnia ◽  
Jens Blobner ◽  
Nico Teske ◽  
Florian Schöberl ◽  
Esther Fitzinger ◽  
...  

Primary CNS lymphomas (PCNSL) represent a group of extranodal non-Hodgkin lymphoma and secondary CNS lymphomas refer to secondary involvement of the neuroaxis by systemic disease. CNS lymphomas are associated with limited prognosis even after aggressive multimodal therapy. Chimeric antigen receptor (CAR) T-cells have proven as a promising therapeutic avenue in hematological B-cell malignancies including diffuse large B-cell lymphoma, B-cell acute lymphoblastic leukemia, and mantle-cell lymphoma. CARs endow an autologous T-cell population with MHC-unrestricted effectivity against tumor target antigens such as the pan B-cell marker CD19. In PCNSL, compelling and long-lasting anti-tumor effects of such therapy have been shown in murine immunocompromised models. In clinical studies on CAR T-cells for CNS lymphoma, only limited data are available and often include both patients with PCNSL but also patients with secondary CNS lymphoma. Several clinical trials on CAR T-cell therapy for primary and secondary CNS lymphoma are currently ongoing. Extrapolated from the available preliminary data, an overall acceptable safety profile with considerable anti-tumor effects might be expected. Whether these beneficial anti-tumor effects are as long-lasting as in animal models is currently in doubt; and the immunosuppressive tumor microenvironment of the brain may be among the most pivotal factors limiting efficacy of CAR T-cell therapy in CNS lymphoma. Based on an increasing understanding of CAR T-cell interactions with the tumor cells as well as the cerebral tissue, modifications of CAR design or the combination of CAR T-cell therapy with other therapeutic approaches may aid to release the full therapeutic efficiency of CAR T-cells. CAR T-cells may therefore emerge as a novel treatment strategy in primary and secondary CNS lymphoma.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 965-965 ◽  
Author(s):  
Xiuli Wang ◽  
Christian Huynh ◽  
Ryan Urak ◽  
Miriam Walter ◽  
Lihong Weng ◽  
...  

Abstract Central nervous system lymphoma (CNSL) is a lymphoid malignancy in which tumors from lymph tissue start in the brain, spinal cord, eyes, and/or meninges (primary CNSL) or present as a result of metastasis from initial systemic sites to the CNS (secondary CNSL). The incidence of primary CNS lymphoma has been increasing over the past 20 years. CNS lymphomas carry a worse prognosis than systemic lymphoma, and therefore, effective treatment is urgently needed for CNS disease. T cells that are genetically engineered with chimeric antigen receptors (CAR) targeting CD19 have broad applications in adoptive therapy of B cell malignancies and have shown tremendous potential in the treatment of systemic lymphoma. During the early phase of CD19-CAR T cell studies, most if not all protocols excluded patients with active CNS involvement. In all CD19-CAR T cell trials, T cell products are administrated intravenously. Systemic CD19-CAR T administration for ALL and DLBCL has resulted in complete remission of concurrent CNS disease. CD19-CAR T cell trafficking to the cerebrospinal fluid (CSF) is frequently reported; however, there has been no evidence thus far to indicate that CAR T cells in CSF are related to neurotoxicity. Therefore, an increasing number of CD19-CAR T cell trial protocols no longer exclude patients with active CNS lymphoma involvement. Based on the success of CD19-CAR T cell therapy in ALL and lymphoma, we aimed to translate this strategy toward a more effective therapy for CNS B cell disease. Methods and Results: Isolated naïve and central memory T cells were genetically modified with CD19-CAR lentivirus and expanded in vitro for 14 days. A mouse model with both CNS and systemic lymphoma in the same animal was established by simultaneously engrafting Daudi cells (human B cell lymphoma) intracranially and subcutaneously into NSG mice. We then administered 2x10^6 CD19-CAR T cells via two delivery routes: intracerebroventricular (i.c.v.) to bypass the blood-brain barrier and target tumor throughout the entire CNS, and intravenous injection (i.v.). We repeatedly observed that a single i.c.v. infusion was capable of completely eradicating CNS lymphoma and systemic lymphoma in all mice by day 14 post CAR T cell infusion and 100% of mice remained tumor free for 300 days until the termination of the experiment. In contrast, a single delivery of CD19-CAR T cells via i.v. infusion resulted in a noticeably delayed antitumor activity with complete remissions only observed approximately 40 days post CAR T cell treatment. Eventually, the tumors relapsed and all i.v. treated mice died before day 180 (Figure 1). T cell trafficking experiments demonstrated that i.c.v. CAR T cells are able to efficiently migrate to the periphery, home to systemic tumor locations, and dramatically expand outside the CNS. We were able to detect CAR T cells in the blood, bone marrow, and spleens of mice that received i.c.v. therapy at 300 days post CAR T cell treatment. These persisting T cells are CD4 dominant and express high levels of CD28 with a broad TCR repertoire. The persisting T cells also maintain anti-tumor functionality and are able to resist tumor re-challenge. Further mechanistic studies indicate that factors within the CSF are able to reprogram i.c.v. infused CAR T cells and upregulate genes that are related to memory function. In conclusion, our studies suggest that CAR T cells administrated via i.c.v. and nurtured by CSF exhibit better efficacy, expansion, and persistence, resulting in disease elimination. More interestingly, i.c.v. delivered CAR T cells efficiently traffic beyond the CNS to the periphery and completely eradicate systemic tumors in the same mouse. This study is the first to demonstrate that locally delivered CAR T cells are capable of efficiently treating both systemic lymphoma and concurrent CNS disease, which can lower the risk of cytokine release syndrome and avoid toxicities derived from lymphodepletion and systemic infusion of CAR T cells. Disclosures Wang: Mustang Therapeutics: Other: Licensing Agreement, Patents & Royalties, Research Funding. Budde:Mustang Therapeutics: Consultancy, Other: Licensing Agreement, Patents & Royalties, Research Funding. Brown:Mustang Therapeutics: Consultancy, Other: Licensing Agreement, Patents & Royalties, Research Funding. Forman:Mustang Therapeutics: Other: Licensing Agreement, Patents & Royalties, Research Funding.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 743
Author(s):  
Aleksei Titov ◽  
Ekaterina Zmievskaya ◽  
Irina Ganeeva ◽  
Aygul Valiullina ◽  
Alexey Petukhov ◽  
...  

Adoptive cell immunotherapy (ACT) is a vibrant field of cancer treatment that began progressive development in the 1980s. One of the most prominent and promising examples is chimeric antigen receptor (CAR) T-cell immunotherapy for the treatment of B-cell hematologic malignancies. Despite success in the treatment of B-cell lymphomas and leukemia, CAR T-cell therapy remains mostly ineffective for solid tumors. This is due to several reasons, such as the heterogeneity of the cellular composition in solid tumors, the need for directed migration and penetration of CAR T-cells against the pressure gradient in the tumor stroma, and the immunosuppressive microenvironment. To substantially improve the clinical efficacy of ACT against solid tumors, researchers might need to look closer into recent developments in the other branches of adoptive immunotherapy, both traditional and innovative. In this review, we describe the variety of adoptive cell therapies beyond CAR T-cell technology, i.e., exploitation of alternative cell sources with a high therapeutic potential against solid tumors (e.g., CAR M-cells) or aiming to be universal allogeneic (e.g., CAR NK-cells, γδ T-cells), tumor-infiltrating lymphocytes (TILs), and transgenic T-cell receptor (TCR) T-cell immunotherapies. In addition, we discuss the strategies for selection and validation of neoantigens to achieve efficiency and safety. We provide an overview of non-conventional TCRs and CARs, and address the problem of mispairing between the cognate and transgenic TCRs. Finally, we summarize existing and emerging approaches for manufacturing of the therapeutic cell products in traditional, semi-automated and fully automated Point-of-Care (PoC) systems.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii360-iii360
Author(s):  
Nicholas Vitanza ◽  
Juliane Gust ◽  
Ashley Wilson ◽  
Wenjun Huang ◽  
Francisco Perez ◽  
...  

Abstract We report preliminary results of three Phase 1 trials of repetitively dosed locoregional CAR T cells for children with recurrent/refractory CNS tumors, targeting HER2 (BrainChild-01), EGFR (BrainChild-02), and B7-H3 (BrainChild-03). Cells are delivered into the tumor cavity (Arm A) or ventricular system (Arm B and BrainChild-03’s DIPG-specific Arm C). Primary endpoints are feasibility and safety. Successful CAR T cell manufacture occurred in 2/2 subjects (BrainChild-01) and 2/3 (BrainChild-02). All subjects tolerated intra-patient dose escalation from 1x107 to 2.5x107 cells/dose without DLTs. Two subjects were evaluable on BrainChild-01 (S-001: glioblastoma, Arm A, survival 173 days post-first infusion, received 6 infusions; S-002: ependymoma, Arm B, survival 111 days, 9 infusions). One subject was evaluable on BrainChild-02 (glioblastoma, Arm A, withdrew from trial at 49 days, 5 infusions). One enrolled patient on BrainChild-03 has not begun treatment. None of the subjects developed new neurologic toxicities, although transient worsening of baseline tumor-related signs and symptoms were seen. Secondary endpoints are efficacy and disease response. No objective radiographic responses have been observed. Both BrainChild-01 subjects had transient systemic CRP elevations following infusions (S-001: peak of 3.9 post Course 1 Week 1; S-002: peak of 2.3 post Course 2 Week 1), possibly indicating an inflammatory response. Both subjects had post-infusion CSF cytokine elevations (CXCL10, GCSF, GM-CSF, IFNa2, IFNg, IL-10, IL12-p40, IL12-p70, IL-15, IL-1a, IL-3, IL-6, IL-7, TNFa, VEGF) without concurrent systemic changes. In summary, we provide preliminary evidence of safety and feasibility of intracranial delivery of CAR T cells for pediatric CNS tumors.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A234-A234
Author(s):  
Rebecca Larson ◽  
Michael Kann ◽  
Stefanie Bailey ◽  
Nicholas Haradhvala ◽  
Kai Stewart ◽  
...  

BackgroundChimeric Antigen Receptor (CAR) therapy has had a transformative impact on the treatment of hematologic malignancies1–6 but success in solid tumors remains elusive. We hypothesized solid tumors have cell-intrinsic resistance mechanisms to CAR T-cell cytotoxicity.MethodsTo systematically identify resistance pathways, we conducted a genome-wide CRISPR knockout screen in glioblastoma cells, a disease where CAR T-cells have had limited efficacy.7 8 We utilized the glioblastoma cell line U87 and targeted endogenously expressed EGFR with CAR T-cells generated from 6 normal donors for the screen. We validated findings in vitro and in vivo across a variety of human tumors and CAR T-cell antigens.ResultsLoss of genes in the interferon gamma receptor (IFNγR) signaling pathway (IFNγR1, JAK1, JAK2) rendered U87 cells resistant to CAR T-cell killing in vitro. IFNγR1 knockout tumors also showed resistance to CAR T cell treatment in vivo in a second glioblastoma line U251 in an orthotopic model. This phenomenon was irrespective of CAR target as we also observed resistance with IL13Ralpha2 CAR T-cells. In addition, resistance to CAR T-cell cytotoxicity through loss of IFNγR1 applied more broadly to solid tumors as pancreatic cell lines targeted with either Mesothelin or EGFR CAR T-cells also showed resistance. However, loss of IFNγR signaling did not impact sensitivity of liquid tumor lines (leukemia, lymphoma or multiple myeloma) to CAR T-cells in vitro or in an orthotopic model of leukemia treated with CD19 CAR. We isolated the effects of decreased cytotoxicity of IFNγR1 knockout glioblastoma tumors to be cancer-cell intrinsic because CAR T-cells had no observable differences in proliferation, activation (CD69 and LFA-1), or degranulation (CD107a) when exposed to wildtype versus knockout tumors. Using transcriptional profiling, we determined that glioblastoma cells lacking IFNγR1 had lower upregulation of cell adhesion pathways compared to wildtype glioblastoma cells after exposure to CAR T-cells. We found that loss of IFNγR1 reduced CAR T-cell binding avidity to glioblastoma.ConclusionsThe critical role of IFNγR signaling for susceptibility of solid tumors to CAR T-cells is surprising given that CAR T-cells do not require traditional antigen-presentation pathways. Instead, in glioblastoma tumors, IFNγR signaling was required for sufficient adhesion of CAR T-cells to mediate productive cytotoxicity. Our work demonstrates that liquid and solid tumors differ in their interactions with CAR T-cells and suggests that enhancing T-cell/tumor interactions may yield improved responses in solid tumors.AcknowledgementsRCL was supported by T32 GM007306, T32 AI007529, and the Richard N. Cross Fund. ML was supported by T32 2T32CA071345-21A1. SRB was supported by T32CA009216-38. NJH was supported by the Landry Cancer Biology Fellowship. JJ is supported by a NIH F31 fellowship (1F31-MH117886). GG was partially funded by the Paul C. Zamecnik Chair in Oncology at the Massachusetts General Hospital Cancer Center and NIH R01CA 252940. MVM and this work is supported by the Damon Runyon Cancer Research Foundation, Stand Up to Cancer, NIH R01CA 252940, R01CA238268, and R01CA249062.ReferencesMaude SL, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018;378:439–448.Neelapu SS, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 2017;377:2531–2544.Locke FL, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. The Lancet Oncology 2019;20:31–42.Schuster SJ, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 2017;377:2545–2554.Wang M, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med 2020;382:1331–1342.Cohen AD, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest 2019;129:2210–2221.Bagley SJ, et al. CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro-oncology 2018;20:1429–1438.Choi BD, et al. Engineering chimeric antigen receptor T cells to treat glioblastoma. J Target Ther Cancer 2017;6:22–25.Ethics ApprovalAll human samples were obtained with informed consent and following institutional guidelines under protocols approved by the Institutional Review Boards (IRBs) at the Massachusetts General Hospital (2016P001219). Animal work was performed according to protocols approved by the Institutional Animal Care and Use Committee (IACUC) (2015N000218 and 2020N000114).


2021 ◽  
Vol 5 (8) ◽  
pp. 2128-2136
Author(s):  
Sophia Faude ◽  
Jane Wei ◽  
Kavitha Muralidharan ◽  
Xiaoming Xu ◽  
Gerald Wertheim ◽  
...  

Abstract CD19-directed chimeric antigen receptor (CAR) T cells show characteristic proliferation kinetics after infusion that correlate with response. Clearance of circulating disease, B-cell aplasia (BCA), and cytokine release syndrome (CRS) are used to observe CAR T-cell function, given the lack of commercial CAR T-cell measurement assays. We investigated the utility of common hematology laboratory parameters in 166 patients with B-cell acute lymphoblastic leukemia (B-ALL) who were treated with CAR T-cell therapy targeting CD19. CAR T-cell infusion was followed by disappearance of circulating blasts in 86% of patients at a median of 6 days. After a lag phase, there was a rapid expansion in absolute lymphocyte count (ALC) in the second week that coincided with the appearance of atypical lymphocytes. The expansion phase was followed by a contraction phase with a concomitant decrease in atypical lymphocytes. In vitro CAR T-cell studies showed similar kinetics and morphological changes. Peak ALC and overall expansion was greater in sustained responders compared with that in nonresponders. Patients with early loss of BCA and those with eventual CD19+ minimal residual disease/relapse showed lower overall lymphocyte expansion compared with the controls. Pleomorphic lymphocytosis was noted in the cerebrospinal fluid at post-CAR time points. We conclude that lymphocyte counts and differential can also be used to evaluate CAR T-cell expansion after infusion, along with BCA and CRS. This is the first report to characterize the morphology of CAR T cells and determine the utility of lymphocyte kinetics.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4187-4187 ◽  
Author(s):  
Zixun Yan ◽  
Wen Wang ◽  
Zhong Zheng ◽  
Ming Hao ◽  
Su Yang ◽  
...  

Abstract Introduction JWCAR029 is a novel CD19-directed 4-1BB stimulated chimeric antigen receptor T (CAR-T) cell type, which is different from JWCAR017 with independent production of CD4 and CD8 T cells and transfusion in non-fixed ratio. We conducted a single arm, open-label, dose escalation Phase I trial of JWCAR029 in relapsed and refractory B-cell non-Hodgkin lymphoma (NCT03355859). Methods From January to July 2018, 10 patients have been enrolled in this trial, including eight diffused large B cell lymphoma (DLBCL) and two MALT lymphoma, with median age of 47 years (range 32 to 59 years). All the patients received immunochemotherapy as induction and more than two lines of salvage treatment. Two patients received bridging chemotherapy after T-cell collection due to rapid tumor progression, followed by re-evaluation before CAR-T cell infusion. Lymphodepletion preconditioning was accomplished by fludarabine 25mg/m2/d and cyclophosphamide 250mg/m2/d on Day-4 to D-2, followed by CAR-T cell infusion on Day0. JWCAR029 was administrated as a single infusion in escalation dose levels, from 2.5×107 CAR-T cells (dose level 1, DL1) to 5.0×107 CAR-T cells (dose level 2, DL2) and to 1.0×108 CAR-T cells (dose level 3, DL3) according to mTPI-2 algorithm. Circulating blood count, serum biochemistry, and coagulation status were follow-up after infusion. Cytokines were assessed on a Luminex platform. Tumor evaluation was performed on Day 29 by PET-CT. PK data were detected by flow cytometry and real-time quantitative polymerase chain reaction system. All the adverse events were recorded. The study was approved by the Shanghai Rui Jin Hospital Review Board with informed consent obtained in accordance with the Declaration of Helsinki. Results The demographic characteristics of the patients were demonstrated in Table 1. Among six evaluable patients (3 of DL1 and 3 of DL2), the ORR was 100% on Day 29, including four complete remission and 2 partial remission. Cytokine release syndrome (CRS) was 100% in Gr 1, with main symptoms as fever (<39.0 degrees), fatigue, and muscle soreness. No neurotoxicity was observed. Four of the six patients with fever >38.0 degrees used prophylactic IL-6 Inhibitor (8mg/kg, ACTEMRA, two patients administered twice). No patients received steroids. The CRS showed no difference between dose level groups (p>0.99). Adverse effects included leukopenia (Gr 3-4: 83.3%, Gr 1-2: 16.7%), hypofibrinogenemia (Gr 1: 16.7%, Gr 2-4: 0%), liver dysfunction (Gr 1: 33.3%, Gr 2-4: 0%), elevated CRP (Gr 1: 83.3%, Gr 2-4: 0%), ferritin (Gr 1-2: 83.3%, Gr 2-4: 0%), or IL-6 (Gr 1-2:100%, Gr 3-4: 0%, Table 2). Conclusion Although long-term follow-up was needed, the preliminary data of six patients in this trial have demonstrated high response rates and safety of JWCAR029 in treating relapsed and refractory B-cell non-Hodgkin lymphoma. Disclosures Hao: JW Therapeutics: Employment, Equity Ownership.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A18.2-A19
Author(s):  
B Kotter ◽  
N Werchau ◽  
W Krueger ◽  
A Roy ◽  
J Mittelstaet ◽  
...  

BackgroundAdoptive transfer of chimeric antigen receptor (CAR)-modified T cells has emerged as a promising treatment modality for a broad range of cancers highlighted by the approval of Kymriah™ and Yescarta™ for the treatment of B cell malignancies. However, lack of control of CAR T cell function and consequent excessive inflammation in patients can result in severe side effects especially when targeting tumor-associated rather than tumor-specific antigens. Thus, temporal and tunable control of CAR activity is of major importance for the clinical translation of innovative CAR designs. While the activation of suicide switches results in the apoptotic elimination of the transferred cells, other strategies, e.g. anti-tag CARs or small molecule-gated CARs, enable the reversible control of CAR-mediated function at the protein level but are restricted to a particular CAR design. Focusing on the control of expression rather than CAR signaling, transcriptional regulators represent a versatile tool facilitating a wide range of CAR T cell applications.Materials and MethodsTo maintain control over the infused CAR T cell product and mitigate risks for the patient, we describe here the development of an inducible switch system for the transcriptional regulation of transgene expression in primary, human T cells. Chemically regulated synthetic transcription factors composed of a zinc finger DNA-binding domain, an inducible control domain and a transcription activation domain were designed, screened for functionality, and evaluated in T cells regarding their potential to control CAR expression both in vitro and in vivo.ResultsBy screening, we identified a synthetic transcription factor, which shows high transcriptional output in T cells in the presence of a clinically relevant inducer drug and absence of background activity in the non-induced state. Using this system we were able to control the expression of a CAR recognizing the CD20 antigen present on B cells and B cell leukemic blasts. The addition of the inducer drug resulted in rapid expression of the anti-CD20 CAR on the T cell surface. Moreover, inducible anti-CD20 CAR T cells executed cytolytic activity against CD20 positive target cells and secreted cytokines upon stimulation in vitro. Effectivity in co-cultures was thereby comparable to T cells expressing the anti-CD20 CAR under a conventional constitutive promoter. Furthermore, we could fine-tune CAR activity by titrating the inducer concentration. By defining the time-point of induction, modulation of the onset of therapy was achieved. Upon inducer drug discontinuation, inducible CD20 CAR T cells lost CAR expression and concurrently all CAR-related functions, indicating that the ‘on’ and ‘off’ status can be tightly controlled by the administration of the drug. After pausing of CAR T cell-mediated activity, we could re-induce CAR expression suggesting complete reversibility of effector function. Finally, we were able to show that inducible CD20 CAR T cells mediate a significant, strictly inducer-dependent antitumor activity in a well-established mouse model of B cell lymphoma.ConclusionsThe zinc-finger-based transcriptional control system investigated in this study provides small molecule-inducible control over a therapeutically relevant anti-CD20 CAR in primary T cells in a time- and dose-dependent manner. The tight regulation of CAR expression will pave the way for safer cellular therapies.Disclosure InformationB. Kotter: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG. N. Werchau: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG. W. Krueger: A. Employment (full or part-time); Significant; Lentigen Technology Inc. A. Roy: A. Employment (full or part-time); Significant; Lentigen Technology Inc. J. Mittelstaet: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG. A. Kaiser: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG.


Sign in / Sign up

Export Citation Format

Share Document