Molecular Neurotoxicology of 6-Hydroxydopamine and Methamphetamine: Lessons Derived from Transgenic Models

2003 ◽  
pp. 357-364
Author(s):  
MOHD IMRAN ◽  
ANURADHA MISHRA ◽  
AFREEN USMANI ◽  
ASIF EQBAL

Parkinson’s disease (PD) is the 2nd most common neurodegenerative disorder due to gradual loss of dopaminergic nerves in the substantia nigra in the midbrain which leads to motor symptoms: For instance, gait dysfunction, involuntary tremor, rigidity, and progressive postural instability. PD has no cure and available current treatment is only symptomatic. At present, the main treatment of PD relies on Levodopa that slowing down the disease development to some level but can lead to several side effects. The literature confirms the available models of Parkinsonism that is chemical-induced, that is, by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine-induced Parkinsonism furthermore transgenic models linked to monogenic alterations in SNCA, LRRK2, UCH-L1, PRKN, and PINK1 genes. In this review article, we conclude that the presently available neurotoxic models of PD that offer a platform for neuroprotective drug discovery.


2020 ◽  
Vol 21 (7) ◽  
pp. 2464 ◽  
Author(s):  
Shyh Jenn Chia ◽  
Eng-King Tan ◽  
Yin-Xia Chao

Parkinson’s disease (PD) is the most common movement disorder with motor and nonmotor signs. The current therapeutic regimen for PD is mainly symptomatic as the etio-pathophysiology has not been fully elucidated. A variety of animal models has been generated to study different aspects of the disease for understanding the pathogenesis and therapeutic development. The disease model can be generated through neurotoxin-based or genetic-based approaches in a wide range of animals such as non-human primates (NHP), rodents, zebrafish, Caenorhabditis (C.) elegans, and drosophila. Cellular-based disease model is frequently used because of the ease of manipulation and suitability for large-screen assays. In neurotoxin-induced models, chemicals such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, and paraquat are used to recapitulate the disease. Genetic manipulation of PD-related genes, such as α-Synuclein(SNCA), Leucine-rich repeat kinase 2 (LRRK2), Pten-Induced Kinase 1 (PINK1), Parkin(PRKN), and Protein deglycase (DJ-1) Are used in the transgenic models. An emerging model that combines both genetic- and neurotoxin-based methods has been generated to study the role of the immune system in the pathogenesis of PD. Here, we discuss the advantages and limitations of the different PD models and their utility for different research purposes.


1976 ◽  
Vol 17 (3) ◽  
pp. 419-419 ◽  
Author(s):  
Masayori OZAKI ◽  
Kazunobu SUGAWARA ◽  
Naoko TAKAMI ◽  
Masashi OGAWA ◽  
Masami NIWA

2020 ◽  
Vol 20 (10) ◽  
pp. 1560-1568 ◽  
Author(s):  
Yan-Qiu Wang ◽  
Yi-Bing Chen ◽  
Dong Xu ◽  
Yuan-Lu Cui

Objective: Energy metabolism disorder is one of the causes of Parkinson's disease (PD). Rodents, such as rats and mice are often used to establish animal models of PD. This paper used a bibliometric method to analyze the studies of rat and mouse PD models published between 2009 and 2018 in the Web of Science (WOS) database using CiteSpace V software. In addition, we conducted a literature review on the development status and research hotspots in this field in the past ten years. Methods: The related articles on rat and mouse PD models were retrieved from the WOS database, and an analysis of the keywords in these articles was conducted using CiteSpace V. A timeline graph was developed by the software in order to show the focus of researchers in the PD field. Results : A total of 8,636 articles were obtained. Results of the cluster analysis in the PD field such as neuroinflammation, oxidative stress, and autophagy, contributed to the systematic review about the pathogenesis of PD. At the same time, based on the property of the model drug, this review has summarized and compared different administration techniques and mechanisms of 6-hydroxydopamine (6- OHDA), 1-methyl-4-phenyl-1, 2, 4, 5-tetrahydropyridine (MPTP), paraquat and rotenone. Conclusion: According to the bibliometric analysis, studies on PD were focused on the mechanisms of oxidative stress, neuroinflammation, and autophagy. Activated microglia releases inflammatory cytokines; mitochondrial dysfunction is caused by oxidative damage of mitochondrial protein; abnormal autophagy-lysosome pathway can lead to abnormal protein deposition in dopaminergic neurons. In addition, although many animal models of PD have been established, there are some limitations of such models. Therefore, it is necessary to develop models that accurately mimic human PD.


Sign in / Sign up

Export Citation Format

Share Document