Influence of secondary motion in large-scale coherent vortical structures on the mass transport in a shallow turbulent wake flow

Shallow Flows ◽  
2004 ◽  
pp. 103-110
Author(s):  
A Rummel ◽  
G Jirka ◽  
C von Carmer
2009 ◽  
Vol 135 (4) ◽  
pp. 257-270 ◽  
Author(s):  
Carl F. Carmer ◽  
Andreas C. Rummel ◽  
Gerhard H. Jirka

2021 ◽  
Vol 11 (4) ◽  
pp. 1486
Author(s):  
Cuiping Kuang ◽  
Yuhua Zheng ◽  
Jie Gu ◽  
Qingping Zou ◽  
Xuejian Han

Groins are one of the popular manmade structures to modify the hydraulic flow and sediment response in river training. The spacing between groins is a critical consideration to balance the channel-depth and the cost of construction, which is generally determined by the backflow formed downstream from groins. A series of experiments were conducted using Particle Image Velocimetry (PIV) to observe the influence of groin spacing on the backflow pattern of two bilateral groins. The spacing between groins has significant effect on the behavior of the large-scale recirculation cell behind groins. The magnitude of the wake flow induced by a groin was similar to that induced by another groin on the other side, but the flow direction is opposite. The spanwise velocity near the groin tip dictates the recirculation zone width behind the groins due to the strong links between the spanwise velocity and the contraction ratio of channel cross-sections between groins. Based on previous studies and present experimental results, quantitative empirical relationships are proposed to calculate the recirculation zone length behind groins alternately placed at different spacing along riverbanks. This study provides better understanding and a robust formula to assess the backflow extent of alternate groins and identify the optimum groins array configuration.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 294
Author(s):  
Dongdong Shao ◽  
Li Huang ◽  
Ruo-Qian Wang ◽  
Carlo Gualtieri ◽  
Alan Cuthbertson

Cage-based aquaculture has been growing rapidly in recent years. In some locations, cage-based aquaculture has resulted in the clustering of large quantities of cages in fish farms located in inland lakes or reservoirs and coastal embayments or fjords, significantly affecting flow and mass transport in the surrounding waters. Existing studies have focused primarily on the macro-scale flow blockage effects of fish cages, and the complex wake flow and associated near-field mass transport in the presence of the cages remain largely unclear. As a first step toward resolving this knowledge gap, this study employed the combined Particle Image Velocimetry and Planar Laser Induced Fluorescence (PIV-PLIF) flow imaging technique to measure turbulence characteristics and associated mass transport in the near wake of a steady current through an aquaculture cage net panel in parametric flume experiments. In the near-wake region, defined as ~3M (mesh size) downstream of the net, the flow turbulence was observed to be highly inhomogeneous and anisotropic in nature. Further downstream, the turbulent intensity followed a power-law decay after the turbulence production region, albeit with a decay exponent much smaller than reported values for analogous grid-generated turbulence. Overall, the presence of the net panel slightly enhanced the lateral spreading of the scalar plume, but the lateral distribution of the scalar concentration, concentration fluctuation and transverse turbulent scalar flux exhibited self-similarity from the near-wake region where the flow was still strongly inhomogeneous. The apparent turbulent diffusivity estimated from the gross plume parameters was found to be in reasonable agreement with the Taylor diffusivity calculated as the product of the transverse velocity fluctuation and integral length scale, even when the plume development was still transitioning from a turbulent-convective to turbulent-diffusive regime. The findings of this study provide references to the near-field scalar transport of fish cages, which has important implications in the assessment of the environmental impacts and environmental carrying capacity of cage-based aquaculture.


Author(s):  
Slobodan Mitric

A recent study requested by a group of mayors representing the largest Polish cities is summarized. The study was to be used as input into local and national debates about future directions of urban transport development in the country. The wider context is that of a major political and economic reform, begun in the late 1980s, involving no less than a rapidpaced transition from socialism to capitalism, featuring large-scale downsizing of the public sector, privatization, and a redistribution of political and resource powers from the state to local governments. Among the downstream effects of these changes has been an increase in private car ownership and use and a reduction in the market share of urban mass transit modes from between 80 and 90 percent of nonwalk daily trips to 70 percent or less. For transit operators, now owned by local governments, this has meant an added financial pressure coming after a decade of underinvestment in infrastructure, rolling stock, and other equipment. Large numbers of unemployed, retired, or otherwise low-income travelers, another consequence of restructuring the economy, have made it difficult to improve cost recovery by increasing fares. Traffic growth has generated congestion, since the structure and size of urban road networks were predicated on low car use. An urban transport strategy is proposed to respond to these problems. Its main short-term objective is to have an affordable and socially and environmentally acceptable modal split. In the longer term, the objective is to use the demand response to a much-reformed price system as the principal guide to how infrastructure and services should evolve. The key features of the strategy are as follows: ( a) evolution toward market-supplied services by a mixed-ownership mass transport industry; ( b) treatment of urban road networks as public utilities, focusing on cost recovery through pricing; ( c) linkage of pricing policies for mass transport and individual transport modes, in line with second-best thinking, aiming to reduce and even eliminate subsidies for both modes; and ( d) reliance on internally generated revenue leveraged by long-term borrowing to finance sectoral investments. It is therefore a counterpoint to a strategy wherein mass transport is a state-owned monopoly, the use of urban roads is subsidized as is mass transport, infrastructure investment is the instrument of preference as opposed to pricing, and sectoral investments and operating subsidies are financed from tax-generated budgets.


1984 ◽  
Vol 144 ◽  
pp. 13-46 ◽  
Author(s):  
N. J. Cherry ◽  
R. Hillier ◽  
M. E. M. P. Latour

Measurements of fluctuating pressure and velocity, together with instantaneous smoke-flow visualizations, are presented in order to reveal the unsteady structure of a separated and reattaching flow. It is shown that throughout the separation bubble a low-frequency motion can be detected which appears to be similar to that found in other studies of separation. This effect is most significant close to separation, where it leads to a weak flapping of the shear layer. Lateral correlation scales of this low-frequency motion are less than the reattachment length, however; it appears that its timescale is about equal to the characteristic timescale for the shear layer and bubble to change between various shedding phases. These phases were defined by the following observations: shedding of pseudoperiodic trains of vortical structures from the reattachment zone, with a characteristic spacing between structures of typically 60% to 80% of the bubble length; a large-scale but irregular shedding of vorticity; and a relatively quiescent phase with the absence of any large-scale shedding structures and a significant ‘necking’ of the shear layer downstream of reattachment.Spanwise correlations of velocity in the shear layer show on average an almost linear growth of spanwise scale up to reattachment. It appears that the shear layer reaches a fully three-dimensional state soon after separation. The reattachment process does not itself appear to impose an immediate extra three-dimensionalizing effect upon the large-scale structures.


Author(s):  
Paulo Yu ◽  
Vibhav Durgesh

An aneurysm is an abnormal growth in the wall of a weakened blood vessel, and can often be fatal upon rupture. Studies have shown that aneurysm shape and hemodynamics, in conjunction with other parameters, play an important role in growth and rupture. The objective of this study was to investigate the impact of varying inflow conditions on flow structures in an aneurysm. An idealized rigid sidewall aneurysm model was prepared and the Womersley number (α) and Reynolds number (Re) values were varied from 2 to 5 and 50 to 250, respectively. A ViVitro Labs pump system was used for inflow control and Particle Image Velocimetry was used for conducting velocity measurements. The results showed that the primary vortex path varied with an increase in α, while an increase in Re was correlated to the vortex strength and formation of secondary vortical structures. The evolution and decay of vortical structures were also observed to be dependent on α and Re.


2017 ◽  
Vol 826 ◽  
pp. 888-917 ◽  
Author(s):  
Valentin Resseguier ◽  
Etienne Mémin ◽  
Dominique Heitz ◽  
Bertrand Chapron

We present here a new stochastic modelling approach in the constitution of fluid flow reduced-order models. This framework introduces a spatially inhomogeneous random field to represent the unresolved small-scale velocity component. Such a decomposition of the velocity in terms of a smooth large-scale velocity component and a rough, highly oscillating component gives rise, without any supplementary assumption, to a large-scale flow dynamics that includes a modified advection term together with an inhomogeneous diffusion term. Both of those terms, related respectively to turbophoresis and mixing effects, depend on the variance of the unresolved small-scale velocity component. They bring an explicit subgrid term to the reduced system which enables us to take into account the action of the truncated modes. Besides, a decomposition of the variance tensor in terms of diffusion modes provides a meaningful statistical representation of the stationary or non-stationary structuration of the small-scale velocity and of its action on the resolved modes. This supplies a useful tool for turbulent fluid flow data analysis. We apply this methodology to circular cylinder wake flow at Reynolds numbers $Re=100$ and $Re=3900$. The finite-dimensional models of the wake flows reveal the energy and the anisotropy distributions of the small-scale diffusion modes. These distributions identify critical regions where corrective advection effects, as well as structured energy dissipation effects, take place. In providing rigorously derived subgrid terms, the proposed approach yields accurate and robust temporal reconstruction of the low-dimensional models.


2013 ◽  
Vol 720 ◽  
pp. 393-423 ◽  
Author(s):  
F. Thiesset ◽  
L. Danaila ◽  
R. A. Antonia

AbstractWe assess the extent to which local isotropy (LI) holds in a wake flow for different initial conditions, which may be geometrical (the shape of the bluff body which creates the wake) and hydrodynamical (the Reynolds number), as a function of the dynamical effects of the large-scale forcing (the mean strain, $ \overline{S} $, combined with the strain induced by the coherent motion, $\tilde {S} $). LI is appraised through either classical kinematic tests or phenomenological approaches. In this respect, we reanalyse existing LI criteria and formulate a new isotropy criterion based on the ratio between the turbulence strain intensity and the total strain ($ \overline{S} + \tilde {S} $). These criteria involve either time-averaged or phase-averaged quantities, thus providing a deeper insight into the dynamical aspect of these flows. They are tested using hot wire data in the intermediate wake of five types of obstacles (a circular cylinder, a square cylinder, a screen cylinder, a normal plate and a screen strip). We show that in the presence of an organized motion, isotropy is not an adequate assumption for the large scales but may be satisfied over a range of scales extending from the smallest dissipative scale up to a scale which depends on the total strain rate that characterizes the flow. The local value of this scale depends on the particular nature of the wake and the phase of the coherent motion. The square cylinder wake is the closest to isotropy whereas the least locally isotropic flow is the screen strip wake. For locations away from the axis, the study is restricted to the circular cylinder only and reveals that LI holds at scales smaller than those that apply at the wake centreline. Arguments based on self-similarity show that in the far wake, the strength of the coherent motion decays at the same rate as that of the turbulent motion. This implies the persistence of the same degree of anisotropy far downstream, independently of the scale at which anisotropy is tested.


Sign in / Sign up

Export Citation Format

Share Document