Shear capacity of hollow flange channel beams in simple connections

2008 ◽  
pp. 227-234
Keyword(s):  
2013 ◽  
Vol 99 (7) ◽  
pp. 1679-1686
Author(s):  
Yuguang Yang ◽  
Joop Den Uijl ◽  
Joost Walraven ◽  
Stavros Petrocheilos

2016 ◽  
Vol 106 (6) ◽  
pp. 708-715
Author(s):  
Chenwei HOU ◽  
Takuro NAKAMURA ◽  
Takayuki IWANAGA ◽  
Junichiro NIWA
Keyword(s):  

2013 ◽  
Vol 7 (1) ◽  
pp. 127-135 ◽  
Author(s):  
E. Grande ◽  
M. Imbimbo ◽  
A. Rasulo

The paper discusses the results of an experimental investigation carried out on reinforced concrete (RC) beams strengthened in shear by externally bonded fiber reinforced plastic (FRP) sheets. The study is devoted to analyze the role that the transverse steel reinforcement and the beam slenderness ratio could play on the resistant mechanism of RC beams strengthened in shear by FRP composites. The results are summarized and analyzed in detail in the paper in terms of shear capacity, cracking pattern and shear resisting contribution of FRP.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4092
Author(s):  
Kamil Bacharz ◽  
Barbara Goszczyńska

The paper reports the results of a comparative analysis of the experimental shear capacity obtained from the tests of reinforced concrete beams with various static schemes, loading modes and programs, and the shear capacity calculated using selected models. Single-span and two-span reinforced concrete beams under monotonic and cyclic loads were considered in the analysis. The computational models were selected based on their application to engineering practice, i.e., the approaches implemented in the European and US provisions. Due to the changing strength characteristics of concrete, the analysis was also focused on concrete contribution in the shear capacity of reinforced concrete beams in the cracked phase and on the angle of inclination of diagonal struts. During the laboratory tests, a modern ARAMIS digital image correlation (DIC) system was used for tracking the formation and development of diagonal cracks.


2021 ◽  
pp. 136943322110093
Author(s):  
Zhenzhen Liu ◽  
Yiyan Lu ◽  
Shan Li ◽  
Jiancong Liao

A comprehensive study of the shear characteristics of steel fiber reinforced recycled concrete-filled steel tube (SRCFST) columns is conducted. 50 CFST stub columns are tested with the variables of steel tube diameter-thickness ratio ( D/t), shear span-to-depth ratio (λ), axial compression ratio ( n), and concrete mix. Two types of cements, three recycled aggregate percentages, three water-cement ratios, and three steel fiber contents are considered in design of concrete mixes. The experimental results show that SRCFST columns present the coincident shear behavior of the ordinary CFST columns. As λ is increased, shear resistance shows a downtrend, while the flexural strength presents an increasing trend. Imposing axial compression or thickening steel tube contributes to an adequate safety margin in plastic period. Based on the contributions superposition method, a predicted model of the shear capacity of SRCFST columns is proposed in consideration of shear-span ratio, axial compression, and self-stress.


2012 ◽  
Vol 455-456 ◽  
pp. 1079-1083
Author(s):  
Wei Jun Yang ◽  
Hong Jia Huang ◽  
Wen Yu Jiang ◽  
Yi Bin Peng

Shantou atmospheric salt-fog environment is simulated with the comprehensive salt spray test chamber. By using reinforced concrete short beams under different water-cement radio, different corrosion time, the inclined section degradation rules of the corrosive reinforced concrete members are researched for establishing shear capacity of short beam formulas in salt-fog environment.


2021 ◽  
Vol 6 (7) ◽  
pp. 97
Author(s):  
Stefanus Adi Kristiawan ◽  
Halwan Alfisa Saifullah ◽  
Agus Supriyadi

Deteriorated concrete cover, e.g., spalling or delamination, especially when it occurs at the web of a reinforced concrete (RC) beam within the shear span, can reduce the shear capacity of the beam. Patching of this deteriorated area may be the best option to recover the shear capacity of the beam affected. For this purpose, unsaturated polyester resin mortar (UPR mortar) has been formulated. This research aims to investigate the efficacy of UPR mortar in limiting the shear cracking and so restoring the shear capacity of the deteriorated RC beam. The investigation is carried out by an experimental and numerical study. Two types of beams with a size of 150 × 250 × 1000 mm were prepared. The first type of beams was assigned as a normal beam. The other was a beam with a cut off in the non-stirrup shear span, which was eventually patched with UPR mortar. Two reinforcement ratios were assigned for each type of beams. The results show that UPR mortar is effective to hamper the propagation of diagonal cracks leading to increase the shear failure load by 15–20% compared to the reference (normal) beam. The increase of shear strength with the use of UPR mortar is consistently confirmed at various reinforcement ratios.


Sign in / Sign up

Export Citation Format

Share Document