Three Dimensional Mathematical Models of Geological Bodies and Their Graphical Display *

2021 ◽  
pp. 103-114
Author(s):  
Zhang Juming ◽  
Liu Chengzou ◽  
Sun Huiwen
2010 ◽  
Vol 24 (1) ◽  
pp. 23-42 ◽  
Author(s):  
T. S. Amer ◽  
Sury Ravindran

ABSTRACT: Graphical displays of business and accounting information are widely used as decision aids. Theoretical work in visual perception indicates graphs that exhibit certain characteristics create visual illusions that may result in biased decision making. This paper reports the results of an experiment that demonstrates how such two-dimensional and three-dimensional visual illusions cause viewers to make biased comparison judgments. The experiment also shows that these decision biases can be mitigated by including gridlines in both two- and three-dimensional graphs.


Robotics ◽  
2013 ◽  
pp. 1212-1232 ◽  
Author(s):  
Rogério Sales Gonçalves ◽  
João Carlos Mendes Carvalho

The science of rehabilitation shows that repeated movements of human limbs can help the patient regain function in the injured limb. There are three types of mechanical systems used for movement rehabilitation: robots, cable-based manipulators, and exoskeletons. Industrial robots can be used because they provide a three-dimensional workspace with a wide range of flexibility to execute different trajectories, which are useful for motion rehabilitation. The cable-based manipulators consist of a movable platform and a base, which are connected by multiple cables that can extend or retract. The exoskeleton is fixed around the patient's limb to provide the physiotherapy movements. This chapter presents a summary of the principal human limb movements, a review of several mechanical systems used for rehabilitation, as well as common mathematical models of such systems.


2001 ◽  
Author(s):  
Dumitru Caruntu ◽  
Mohamed Samir Hefzy

Abstract Most of the anatomical mathematical models that have been developed to study the human knee are either for the tibio-femoral joint (TFJ) or patello-femoral joint (PFJ). Also, most of these models are static or quasistatic, and therefore do not predict the effects of dynamic inertial loads, which occur in many locomotor activities. The only dynamic anatomical model that includes both joints is a two-dimensional model by Tumer and Engin [1]. The model by Abdel-Rahman and Hefzy [2] is the only three dimensional dynamic model for the knee joint available in the literature; yet, it includes only the TFJ and allows only for rigid contact.


2019 ◽  
Vol 30 ◽  
pp. 07014
Author(s):  
Mikhail A. Stepovich ◽  
Dmitry V. Turtin ◽  
Elena V. Seregina ◽  
Veronika V. Kalmanovich

Two-dimensional and three-dimensional mathematical models of diffusion and cathodoluminescence of excitons in single-crystal gallium nitride excited by a pulsating sharply focused electron beam in a homogeneous semiconductor material are compared. The correctness of these models has been carried out, estimates have been obtained to evaluate the effect of errors in the initial data on the distribution of the diffusing excitons and the cathodoluminescence intensity.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 52-56
Author(s):  
Dawid Wajnert ◽  
Bronisław Tomczuk

AbstractThis paper presents two mathematical models for temperature field analysis in a new hybrid magnetic bearing. Temperature distributions have been calculated using a three dimensional simulation and a two dimensional one. A physical model for temperature testing in the magnetic bearing has been developed. Some results obtained from computer simulations were compared with measurements.


Sign in / Sign up

Export Citation Format

Share Document