Three Dimensional Mathematical Models for the Deformation of Human fascia

2008 ◽  
Vol 12 (3) ◽  
pp. 265-266
Robotics ◽  
2013 ◽  
pp. 1212-1232 ◽  
Author(s):  
Rogério Sales Gonçalves ◽  
João Carlos Mendes Carvalho

The science of rehabilitation shows that repeated movements of human limbs can help the patient regain function in the injured limb. There are three types of mechanical systems used for movement rehabilitation: robots, cable-based manipulators, and exoskeletons. Industrial robots can be used because they provide a three-dimensional workspace with a wide range of flexibility to execute different trajectories, which are useful for motion rehabilitation. The cable-based manipulators consist of a movable platform and a base, which are connected by multiple cables that can extend or retract. The exoskeleton is fixed around the patient's limb to provide the physiotherapy movements. This chapter presents a summary of the principal human limb movements, a review of several mechanical systems used for rehabilitation, as well as common mathematical models of such systems.


2001 ◽  
Author(s):  
Dumitru Caruntu ◽  
Mohamed Samir Hefzy

Abstract Most of the anatomical mathematical models that have been developed to study the human knee are either for the tibio-femoral joint (TFJ) or patello-femoral joint (PFJ). Also, most of these models are static or quasistatic, and therefore do not predict the effects of dynamic inertial loads, which occur in many locomotor activities. The only dynamic anatomical model that includes both joints is a two-dimensional model by Tumer and Engin [1]. The model by Abdel-Rahman and Hefzy [2] is the only three dimensional dynamic model for the knee joint available in the literature; yet, it includes only the TFJ and allows only for rigid contact.


2019 ◽  
Vol 30 ◽  
pp. 07014
Author(s):  
Mikhail A. Stepovich ◽  
Dmitry V. Turtin ◽  
Elena V. Seregina ◽  
Veronika V. Kalmanovich

Two-dimensional and three-dimensional mathematical models of diffusion and cathodoluminescence of excitons in single-crystal gallium nitride excited by a pulsating sharply focused electron beam in a homogeneous semiconductor material are compared. The correctness of these models has been carried out, estimates have been obtained to evaluate the effect of errors in the initial data on the distribution of the diffusing excitons and the cathodoluminescence intensity.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 52-56
Author(s):  
Dawid Wajnert ◽  
Bronisław Tomczuk

AbstractThis paper presents two mathematical models for temperature field analysis in a new hybrid magnetic bearing. Temperature distributions have been calculated using a three dimensional simulation and a two dimensional one. A physical model for temperature testing in the magnetic bearing has been developed. Some results obtained from computer simulations were compared with measurements.


1990 ◽  
Vol 43 (12) ◽  
pp. 297-309 ◽  
Author(s):  
A. T. Winfree

Three-dimensional continua capable of recurrent local activation are observed—both in the laboratory and in mathematical models—to support persistent self-organizing patterns of activity most conveniently described in terms of vortex lines. These lines generally close in rings, which may be linked and knotted. In some cases they adopt stable configurations resembling tiny dynamos of millimeter dimensions. The dynamics of these “organizing centers” has been investigated in certain chemical reactions, in heart muscle, and numerically in digital computers. The pertinent mathematical principles appear to entail consequences of local reaction and neighborhood diffusion, in the form of a dependency of the vortex filament’s lateral motion upon its local geometry and, when too closely approached by another segment of vortex filament, upon the distance and orientation involved.


1993 ◽  
Vol 86 (8) ◽  
pp. 657-661
Author(s):  
Peter L. Glidden ◽  
Erin K. Fry

The reforms proposed in the NCTM's Curriculum and Evaluation Standards (1989) call for specific changes in the grades 9-12 mathematics curriculum, as well as for general themes that should be emphasized throughout the curriculum. In particular, the standards document calls for including topics from discrete mathematics and three-dimensional geometry, and it calls for increased emphasis on paragraph-style proofs. Overall, these and other topics should be taught with the ultimate goals of illustrating mathematical connections and constructing mathematical models to solve real-world problems.


2016 ◽  
Vol 166 ◽  
pp. 181-188 ◽  
Author(s):  
Josep M. Caminal ◽  
Karol Mejía ◽  
Luis Arias ◽  
Cristina Masuet-Aumatell ◽  
Jon Larrucea-Maseda ◽  
...  

2021 ◽  
Vol 16 ◽  
pp. 250-260
Author(s):  
Evelina Prozorova

Article is proposed, built taking into account the influence of the angular momentum (force) in mathematical models of open mechanics. The speeds of various processes at the time of writing the equations were relatively small compared to modern ones. Theories have generally been developed for closed systems. As a result, in continuum mechanics, the theory developed for potential flows was expanded on flows with significant gradients of physical parameters without taking into account the combined action of force and moment. The paper substantiates the vector definition of pressure and the no symmetry of the stress tensor based on consideration of potential flows and on the basis of kinetic theory. It is proved that for structureless particles the symmetry condition for the stress tensor is one of the possible conditions for closing the system of equations. The influence of the moment is also traced in the formation of fluctuations in a liquid and in a plasma in the study of Brownian motion, Landau damping, and in the formation of nanostructures. The nature of some effects in nanostructures is discussed. The action of the moment leads to three-dimensional effects even for initially flat structures. It is confirmed that the action of the moment of force is the main source of the collective effects observed in nature. Examples of solving problems of the theory of elasticity are given.


2020 ◽  
Author(s):  
Z. Wang ◽  
J.B. Estrada ◽  
E.M. Arruda ◽  
K. Garikipati

AbstractWe present a novel, fully three-dimensional approach to soft material characterization and constitutive modeling with relevance to soft biological tissue. Our approach leverages recent advances in experimental techniques and data-driven computation. The experimental component of this approach involves in situ mechanical loading in a magnetic field (using MRI), yielding the entire deformation tensor field throughout the specimen regardless of the possible irregularities in its three-dimensional shape. Characterization can therefore be accomplished with data at a reduced number of deformation states. We refer to this experimental technique as MR-u. Its combination with powerful approaches to inverse modelling, specifically methods of model inference, would open the door to insightful mechanical characterization for soft materials. In recent computational advances that answer this need, we have developed new, data-driven inverse techniques to infer the model that best explains the physics governing observed phenomena from a spectrum of admissible ones, while maintaining parsimony of representation. This approach is referred to as Variational System Identification (VSI). In this communication, we apply the MR–u approach to characterize soft biological tissue and polymers, and using VSI, we infer the physically best-suited and parsimonious mathematical models of their mechanical response. We demonstrate the performance of our methods in the face of noisy data with physical constraints that challenge the identification of mathematical models, while attaining high accuracy in the predicted response of the inferred models.


Sign in / Sign up

Export Citation Format

Share Document