The mechanical properties of cracked round bamboo reinforced with FRP sheets subjected to axial compression

2019 ◽  
pp. 85-90
Author(s):  
X.M. Meng ◽  
Y.Y. Cao ◽  
H. Sun ◽  
P. Feng
2019 ◽  
Vol 223 ◽  
pp. 736-754 ◽  
Author(s):  
Yijie Huang ◽  
Xiaowei Li ◽  
Yu Lu ◽  
Haichao Wang ◽  
Qing Wang ◽  
...  

2011 ◽  
Vol 311-313 ◽  
pp. 301-308
Author(s):  
Shou Hong Han ◽  
Zhen Hua Lu ◽  
Yong Jin Liu

In order to investigate the multi-axial mechanical properties of a kind of PU (polyurethane) foam, some experiments in different loading conditions including uni-axial tension, uni-axial compression, hydrostatic compression and three-point bending were conducted. It is shown that the hydrostatic component influences yield behavior of PU foam, the yield strength and degree of strain hardening in hydrostatic compression exceed those for uni-axial compression. In terms of the differential hardening constitutive model, the evolution of PU foam yield surface and plastic hardening laws were fitted from experimental data. A finite element method was applied to analyze the quasi-static responses of the PU foam sandwich beam subjected to three-point bending, and good agreement was observed between experimental load-displacement responses and computational predictions, which validated the multi-axial loading methods and stress-strain constitutive model parameters. Moreover, effects of two foam models applied to uni-axial loading and multi-axial loading conditions were analyzed and compared with three-point bending tests and simulations. It is found that the multi-axial constitutive model can bring more accurate prediction whose parameters are obtained from the tests above mentioned.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3140 ◽  
Author(s):  
Yong Yu ◽  
Bo Wu

In the past decade, directly reusing large pieces of coarsely crushed concrete (referred to as demolished concrete lumps or DCLs) with fresh concrete in new construction was demonstrated as an efficient technique for the recycling of waste concrete. Previous studies investigated the mechanical properties of recycled lump concrete (RLC) containing different sizes of DCLs; however, for actual application of this kind of concrete, little information is known about the influence of the spatial locations of DCLs and coarse aggregates on the concrete strength. Moreover, the mechanical responses of such a concrete containing various shapes of DCLs are also not well illustrated. To add knowledge related to these topics, two-dimensional mesoscale simulations of RLC containing DCLs under axial compression were performed using the discrete element method. The main variables of interest were the relative strength of the new and old concrete, the distribution of the lumps and other coarse aggregates, and the shape of the lumps. In addition, the differences in compression behavior between RLC and recycled aggregate concrete were also predicted. The numerical results indicate that the influence tendency of the spatial locations of DCLs and coarse aggregate pieces on the compressive stress–strain curves for RLC is similar to that of the locations of coarse aggregates for ordinary concrete. The strength variability of RLC is generally higher than that of ordinary concrete, regardless of the relative strength of the new and old concrete included; however, variability has no monotonic trend with an increase in the lump replacement ratio. The mechanical properties of RLC in compression are little influenced by the geometric shape of DCLs as long as the ratio of the length of their long axis to short axis is smaller than 2.0. The compressive strength and elastic modulus of RLC are always superior to those of recycled aggregate concrete designed with a conventional mixing method.


Author(s):  
Shan Jin ◽  
Shuai Yuan ◽  
Yong Bai

In practical application, pipelines will inevitably experience bending and compression during manufacture, transportation and offshore installation. The mechanical behavior of tubes under combined axial compression and bending loads is investigated using experiments and finite element method in this paper. Tubes with D/t ratios in the range of 40 and 97 are adopted in the experiments. Then, the ultimate loads and the local buckling modes of tubes are studied. The commercial software ABAQUS is used to build FE models to simulate the load-shortening responses of tubes under combined loads. The results acquired from the ABAQUS simulation are compared with the ones from verification bending experiment, which are in good agreement with each other. The models in this paper are feasible to analyze the mechanical properties of tubes under combined axial compression and bending loads. The related results may be of interest to the manufacture engineers.


Ceramics ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 161-179 ◽  
Author(s):  
Frances Su ◽  
Joyce Mok ◽  
Joanna McKittrick

Freeze casting is a technique used to manufacture porous ceramics with aligned microstructures. In conventional freeze casting, these microstructures are aligned along a single direction of freezing. However, a caveat to these ceramics has been their ensuing lack of strength and toughness due to their high porosity, especially in the direction orthogonal to the direction of alignment. In this work, a novel freezing casting method referred to as “radial-concentric freeze casting” is presented, which takes its inspiration from the radially and concentrically aligned structure of the defensive spines of the porcupine fish. The method builds off the radial freeze casting method, in which the microstructure is aligned radially, and imposes a concentric alignment. Axial compression and Brazilian tests were performed to obtain axial compressive strengths, axial compressive moduli, and splitting tensile strengths of freeze cast samples with and without epoxy infiltration. Notably, radial-concentric freeze cast samples had the greatest improvements in axial compressive modulus and splitting tensile strength with infiltration, when compared against the changes in mechanical properties of conventional and radial freeze cast ceramics with infiltration. These results provide further evidence for the importance of structure in multiphase materials and the possibility of enhancing mechanical properties through the controlled alignment of microstructures.


2011 ◽  
Vol 94-96 ◽  
pp. 1983-1988
Author(s):  
Jia Song ◽  
Zhen Bao Li ◽  
Yong Ping Xie ◽  
Xiu Li Du ◽  
Yue Gao

An experimental study was made of the mechanical properties of large scale confined concrete subjected to the axial compression test. Eleven tied concrete columns and six plain concrete prisms were tested. In the test, each specimen had the same transverse reinforcement configuration, and similar volumetric ratio of lateral steel, while different size. The test results in this paper indicate that the size of the specimen has no obvious relationship with the ultimate strength, however, it does affect the post-peak ductility to some extent. As a supplement to the experimental study, a finite element method was adopted to imitate the mechanical behavior of the confined concrete under axial compression. The results of the imitation in this paper indicate the confinement mechanism of large scale specimens.


Sign in / Sign up

Export Citation Format

Share Document