Anti-Inflammatory Properties of Bioactive Compounds from Medicinal Plants

Author(s):  
Muhammad Imran ◽  
Abdur Rauf ◽  
Anees Ahmed Khalil ◽  
Saud Bawazeer ◽  
Seema Patel ◽  
...  
Author(s):  
Bui Thanh Tung

Gout is a complex form of arthritis which is characterized by sudden, severe attacks of pain, swelling, redness, and tenderness in the joints. Gout is a type of inflammatory arthritis that is triggered by the crystallization of uric acid within the joints and is often associated with hyperuricemia. Natural products offer many options to reduce the progress and symptoms of diseases, including gout. Natural compound structure including lignans, flavonoids, tannins, polyphenols, triterpenes, sterols, and alkaloids have anti-inflammatory, antioxidant, and XO activities. In this chapter, the authors present medicinal plants and isolated compounds which are used to prevent and reduce the pathogenesis of gout.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1348
Author(s):  
Sheikh Rashel Ahmed ◽  
Muhammad Fazle Rabbee ◽  
Anindita Roy ◽  
Rocky Chowdhury ◽  
Anik Banik ◽  
...  

When functioning properly, the stomach is the center of both physical and mental satisfaction. Gastrointestinal disorders, or malfunctioning of the stomach, due to infections caused by various biological entities and physiochemical abnormalities, are now widespread, with most of the diseases being inflammatory, which, depending on the position and degree of inflammation, have different names such as peptic or gastric ulcers, irritable bowel diseases, ulcerative colitis, and so on. While many synthetic drugs, such as non-steroidal anti-inflammatory drugs, are now extensively used to treat these diseases, their harmful and long-term side effects cannot be ignored. To treat these diseases safely and successfully, different potent medicinal plants and their active components are considered game-changers. In consideration of this, the present review aimed to reveal a general and comprehensive updated overview of the anti-ulcer and anti-inflammatory activities of medicinal plants. To emphasize the efficacy of the medicinal plants, various bioactive compounds from the plant extract, their experimental animal models, and clinical trials are depicted.


Author(s):  
Abdel-Fattah WI ◽  
◽  
El-Bassyouni GT ◽  

Drug innovation using natural products is an interesting mission for planning new leads. It describes the bioactive compounds resulting from natural resources, characterization and pharmacological examination. It emphases on the triumph of these resources in the process of finding and realizing new and effective drug compounds that can be beneficial for human resources. For medicinal devotions and for the progress of pharmaceutical substances, medicinal plants were used such as Physalis angulata L which is a medicinal plant used for numerous therapies including wound healing (Figure 1) [1]. Figure 1: Physalis angulata L Fruits within its cover [16]. Physalis peruviana (golden berry) is an herbaceous annual plant belongs to the family Solanaceae [2]. This plant has a tremendous medicinal value for curing out different diseases: cancer, leukemia, diabetes, ulcers, malaria, asthma, hepatitis, dermatitis, rheumatism and several other diseases [3]. The golden berry fruit tastes like a sweet tomato and includes high levels of vitamin C, vitamin A and the vitamin B-complex. The fruit was demonstrated to have both anti-inflammatory and antioxidant properties [4,5]. Herbal specialists and local people of several countries have used many extracts of medicinal plants to achieve and treat various diseases comprising wound healing [6]. Physalis with its notable benefits related to high nutrients and bioactive compounds with extraordinary antioxidant activity and other several medicinal properties have been ascribed to these compounds [7,8]. The bioactive compounds are formed as primary and secondary metabolites of the fruits. These compounds are biologically active with cytotoxic, antimicrobial, antioxidant, antiviral, fungicidal, insecticidal, tranquilizing, analgesic, anti-inflammatory, and contraceptive actions, among others. Such compounds are used for several dedications, such as in medical therapy, to cure diseases, in the cosmetics, and in the food industry as antioxidants or flavorings [9]. Wounds are well-defined as a break in the cellular integrity of the anatomic continuousness of a tissue generally because of a chemical, microbial, physical or thermal injury [10]. Recently, wounds have become a very exciting pathological problem. Abdul-Nasir-Deen et al., explored the anti- inflammatory and wound healing properties of methanol leaf extract of Physalis angulata L [11]. They indicated that such extract possesses anti-inflammatory and wound healing activity which may justify its medicinal uses in the treatment of wounds. The PAL formulated cream at several concentrations of 1.25, 2.5, 5 and 10% w/v verified wound healing properties with obvious angiogenesis, collagenation and re-epithelization distinctive of fibrous tissue formation in wound bed [12] as presented in Figure 2. Figure 2: Therapeutic effect of methanol leaf extract of Physalis angulata on carrageenan- induced oedema in rats. A) Time-course curve; B) Area under the curve of carrageenan induced oedema, Saline: Normal Saline Control group, Aspirin: Aspirin-treated group, PAL: methanol leaf extract of Physalis angulate. Values are mean ± SEM (n=5). Nsp >0.05; *p< 0.05; **p< 0.01; ***p<0.001; yyp< 0.001; yyyp< 0.0001. Compared with normal saline control [11]. Moreover, the methanol leaf extracts of Physalis angulate with the existence of secondary metabolites including flavonoids and tannins justify the biological and pharmacological achieved activities (Figure 3). Figure 3: Histological images (x 400) showing influence of PAL on excised wound tissues from both treated and untreated wound tissues. A) Untreated wound tissues; B) Vehicle treated (aqueous cream only) wound tissues; C) 1% w/w silver sulphadiazine- treated wound tissues; D) 10% w/w PAL-treated wound tissues; E) 5% w/w PAL- treated wound tissues; F) 2.5% w/w PALtreated wound; G) 1.25% w/w PAL-treated wound; DNGT: Diffuse Necrotic Granulation Tissue; MDGT: Moderate Diffuse Granulation Tissue; HF: Hair Follicle; DF: Dense Fibrous Tissue; ASCKE: Atrophic Squamous Cell Keratinized Epithelium; SGT: Reduced Granulation Tissue; SeG: Sebaceous Gland; SwG: Sweat Gland [11]. To formulate a porous carbon material that had an abundance of surface functional groups and a huge specific surface area; Physalis alkekengi L. husk (PH) was used for the first time as a carbon source from PH and designated as porous carbon Physalis alkekengi L. husk (PCPH) by Zhang et al., [13]. The experimental results demonstrate that (PCPH) prepared from PH has good adsorption performance for Malachite Green (MG). MG was used as a model dye for evaluating the adsorption performance of PCPH. Zhang et al concluded that PCPH has excellent application potential in the treatment of environmental water pollution. Therefore, the preparation of PCPH with high adsorption performance has upright scenarios treatment of wastewater from printing and dye industries, and similarly affords a hypothetical basis for the inclusive use of shell-based agricultural waste [14]. The possible adsorption mechanisms of PCPH for MG are anticipated; which comprises H-bond interaction, pore filling, p-p interaction, and electrostatic attraction (Figure 4) [15]. Figure 4: The adsorption mechanism diagram of PCPH to MG [13]. Recently, Zimmer et al., concluded that the extracts of the Physalis fruit have functional properties of great importance, being a source of phenolic compounds possessing antioxidant, antibacterial, and antitumor activities [8]. The pulp and seed extracts displayed moderately active inhibition halos in the existence of Gram-positive bacteria. Both pulp and seeds extracts were talented to reduce the cell viability percentage. The pulp (P) and seed (S) hydroalcoholic extracts of Physalis pubescens showed moderate antibacterial activity against Gram-positive Staphylococcus aureus and Listeria monocytogenes. The pulp (P) and seed (S) extracts showed moderate anti-tumor activity against the rat glioblastoma cell line (C6) and murine melanoma cell line (B16F10) (Figure 5). Figure 5: Viability graphs of cells of murine melanoma lineage (B16F10) exposed to different concentration s for 48h and 72h of hydroalcoholic extracts of pulp (P) and seed (S). *The greater the number of asterisks, the higher the significance [8].


2019 ◽  
Author(s):  
Chem Int

Coumarin and its derivatives are widely spread in nature. Coumarin goes to agroup as benzopyrones, which consists of a benzene ring connected to a pyronemoiety. Coumarins displayed a broad range of pharmacologically useful profile.Coumarins are considered as a promising group of bioactive compounds thatexhibited a wide range of biological activities like anti-microbial, anti-viral,antiparasitic, anti-helmintic, analgesic, anti-inflammatory, anti-diabetic, anticancer,anti-oxidant, anti-proliferative, anti-convulsant, and antihypertensiveactivities etc. The coumarin compounds have immense interest due to theirdiverse pharmacological properties. In particular, these biological activities makecoumarin compounds more attractive and testing as novel therapeuticcompounds.


2020 ◽  
Vol 26 (5) ◽  
pp. 519-541 ◽  
Author(s):  
Giovanna Ferrentino ◽  
Ksenia Morozova ◽  
Christine Horn ◽  
Matteo Scampicchio

Background: The use of essential oils is receiving increasing attention worldwide, as these oils are good sources of several bioactive compounds. Nowadays essential oils are preferred over synthetic preservatives thanks to their antioxidant and antimicrobial properties. Several studies highlight the beneficial effect of essential oils extracted from medicinal plants to cure human diseases such as hypertension, diabetes, or obesity. However, to preserve their bioactivity, the use of appropriate extraction technologies is required. Method: The present review aims to describe the studies published so far on the essential oils focusing on their sources and chemical composition, the technologies used for their recovery and their application as antioxidants in food products. Results: The review has been structured in three parts. In the first part, the main compounds present in essential oils extracted from medicinal plants have been listed and described. In the second part, the most important technologies used for extraction and distillation, have been presented. In detail, conventional methods have been described and compared with innovative and green technologies. Finally, in the last part, the studies related to the application of essential oils as antioxidants in food products have been reviewed and the main findings discussed in detail. Conclusions: In summary, an overview of the aforementioned subjects is presented by discussing the results of the most recent published studies.


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


Sign in / Sign up

Export Citation Format

Share Document