Measurement Techniques for Thermal Conductivity of Nanofluids

Author(s):  
Kelvii Wei
2007 ◽  
Vol 124-126 ◽  
pp. 1641-1644 ◽  
Author(s):  
M. Gustavsson ◽  
Hideaki Nagai ◽  
Takeshi Okutani

In modern thermal analysis and design involving thermal transport in solid components it is necessary to apply different modeling of the thermal heat flow in bulk material and across solid surface interfaces either in shape of a layer or a solid-solid interface. Similar differences occur when applying different measurement techniques. Some techniques have been developed specifically for the purpose of performing measurements of bulk properties by removing the influence from thermal contact resistance between the measurement probe and the sample material. Thermal conductivity measurements on metal and ceramic objects of various geometries such as thin bars, thin sheets as well as coatings or layers are here described when using the Transient Plane Source technique. A summary overview of the recent developments of this technique, including its ability to be applied in measurement situations covering a wide range of length and time scales, is also presented. Structural changes in anisotropy can be recorded with high sensitivity by comparative measurements. The technique may be applied in situations requiring non-destructive testing, e.g. samples of particular geometry used for mechanical or tensile testing.


1994 ◽  
Vol 47 (3) ◽  
pp. 101-112 ◽  
Author(s):  
K. E. Goodson ◽  
M. I. Flik

The thermal conductivities of solid layers of thicknesses from 0.01 to 100 μm affect the performance and reliability of electronic circuits, laser systems, and microfabricated sensors. This work reviews techniques that measure the effective thermal conductivity along and normal to these layers. Recent measurements using microfabricated experimental structures show the importance of measuring the conductivities of layers that closely resemble those in the application. Several promising non-contact techniques use laser light for heating and infrared detectors for temperature measurements. For transparent layers these methods require optical coatings whose impact on the measurements has not been determined. There is a need for uncertainty analysis in many cases, particularly for those techniques which apply to very thin layers or to layers with very high conductivities.


Author(s):  
Matthew I. Ralphs ◽  
Nicholas Roberts

Carbon nanotubes (CNTs) exhibit extraordinary mechanical and thermal properties and as such have become the subject of large research interest. Furthermore, CNTs in a polymer matrix have been shown to significantly enhance the thermal conductivity of the polymer/CNT composite in some cases. A few areas of application for this work are thermal interface materials, thermally conductive composites used in aerospace applications, and polymer heat exchangers. In each of these applications the purpose of the polymer or epoxy is to take advantage of the mechanical properties or chemical inertness. The current issue with their adoption is still the poor thermal conductivity. One approach to overcoming this issue is to embed thermally conductive materials into the host material in low concentrations to enhance the effective thermal conductivity. There has been a significant amount of work in this area, but we are far from an understanding that allows us to design a nanocomposite that gives the desired thermal conductivity (specifically in the high thermal conductivity range). This work explores the role that chemical modification (functionalization) of the CNT can play in tailoring thermal transport properties of the composite under strain. It is expected that the functionalization process would have some effect on conduction between the CNT and the polymer matrix and therefore either increase or decrease the ability of the composite to transport thermal energy. This paper focuses on three different functionalizations of CNT and explores the thermal conductivity of a polymer/CNT composite that uses polydimethylsiloxane (PDMS) as the matrix. The three functionalizations of CNTs considered are that of unfunctionalized, functionalized with a carboxyl group (-COOH), and functionalized with a hydroxyl group (-OH). The CNTs used in this study are strictly multi-walled carbon nanobutes (MWCNTs) purified to 95%. The effect of these three functionalizations on the overall thermal conductivity of the composite is evaluated through experimental methods with a stepped bar apparatus at various levels of strain on the composite sample. Results show that, while functionalization of the CNT may affect the CNT/PDMS bond, the stepped bar apparatus does not provide enough precision on the level of strain placed on the sample for a comparison across functionalizations. Future work will try to elucidate both the effect of strain and functionalization using multiple thermal conductivity measurement techniques.


2001 ◽  
Vol 691 ◽  
Author(s):  
R. H. Tedstrom ◽  
G. A. Lamberton ◽  
Terry M. Tritt ◽  
G. S. Nolas

ABSTRACTSkutterudites are a class of materials that show promise for thermoelectric applications due to their high power factor and the ability to “tune” the thermal conductivity due to the addition of “rattling” atoms into the novel structure of these materials. Thermopower and resistivity is measured and reported for a series of Eu and Yb-doped skutterudites over a temperature range of approximately 100 K – 700 K using the High Temperature Thermoelectric Probe. Sample measurement techniques are briefly discussed. Data from various dopings is presented and compared in hope of showing trends that point towards improvements in these skutterudites.


1985 ◽  
Vol 22 (11) ◽  
pp. 1588-1593 ◽  
Author(s):  
Malcolm J. Drury

Thermal, electrical, and other physical property data are reported for a suite of basalts from the core of a 1.9 km hole at Reydarfjordur, eastern Iceland. The principal aim is to add to the literature thermal diffusivity data on basalts. Both lava-flow and dyke-intrusion samples have been measured, in roughly the proportion of their abundances in the drilled section. Density and porosity measurements are in good agreement with values published previously by others. Thermal conductivity values are approximately 10% higher than those published by others, probably because of differences in measurement techniques. Porosity of the samples generally decreases with depth because of increasing infilling of voids and cracks with alteration products. Density, thermal conductivity, thermal diffusivity, and the derived properties grain density and grain conductivity increase with depth, whereas electrical resistivity decreases. Bulk properties of the section have been estimated. They are thermal diffusivity, 0.70 mm2/s (0.70 × 10−6 m2/s); thermal conductivity, 1.97 W/m∙K; bulk density, 2.82 Mg/m3; and porosity, 0.039 (3.9%). Curves modelling in situ electrical resistivity indicate values in the range 50–3000 ?∙m. The electrical structure of the crust in the Reydarfjordur area is apparently different from that in southwest Iceland, probably reflecting a different history of hydrothermal circulation and alteration.


Author(s):  
Gul Muhammad ◽  
Amanullah Marri ◽  
Abdul Majeed Shar

Thermal conductivity displays a key role in design of engineering structures where, thermal stresses resulting from heat and temperatures are of concern. Significant efforts were made to measure the thermal conductivity of different materials. For thermal conductivity characterization of soil samples it is essential to have very flexible set-up. Hence, this paper provides details about indigenously developed experimental setup for thermal conductivity measurement. The design of this newly developed setup is based on the basic principle of steady state heat flow. This experimental setup is designed in order to measure the thermal conductivity of various materials such as soils, rocks, concrete and any type of unbonded and bonded materials. In this paper, initially the theoretical background of the measurement techniques and the principle of heat flow are described, followed by design description and working procedure. The design has been kept very simple, adjustable for varying type and size of specimens and easy to operate with excellent level of accuracy as evident from system calibration. The accuracy and precision of the newly developed setup was verified by testing reference materials of known thermal conductivity and in the test results a high correlation coefficient (R^2 = 0.999) between experimental data and fitting curve was achieved.


Author(s):  
Gul Muhammad ◽  
Amanullah Marri ◽  
Abdul Majeed Shar

Thermal conductivity displays a key role in design of engineering structures where, thermal stresses resulting from heat and temperatures are of concern. Significant efforts were made to measure the thermal conductivity of different materials. For thermal conductivity characterization of soil samples it is essential to have very flexible set-up. Hence, this paper provides details about indigenously developed experimental setup for thermal conductivity measurement. The design of this newly developed setup is based on the basic principle of steady state heat flow. This experimental setup is designed in order to measure the thermal conductivity of various materials such as soils, rocks, concrete and any type of unbonded and bonded materials. In this paper, initially the theoretical background of the measurement techniques and the principle of heat flow are described, followed by design description and working procedure. The design has been kept very simple, adjustable for varying type and size of specimens and easy to operate with excellent level of accuracy as evident from system calibration. The accuracy and precision of the newly developed setup was verified by testing reference materials of known thermal conductivity and in the test results a high correlation coefficient (R2 = 0.999) between experimental data and fitting curve was achieved.


Sign in / Sign up

Export Citation Format

Share Document