Characterisation of interfacial effects in SrTiO3 electronic ceramics

Author(s):  
Z Mao ◽  
K M Knowles
Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 20
Author(s):  
Qingqian Qiu ◽  
Pengzhi Wu ◽  
Yifeng Hu ◽  
Jiwei Zhai ◽  
Tianshu Lai

Superlattice-like (SLL) phase-change film is considered to be a promising phase-change material because it provides more controllabilities for the optimization of multiple performances of phase-change films. However, the mechanism by which SLL structure affects the properties of phase-change films is not well-understood. Here, four SLL phase-change films [Ge8Sb92(15 nm)/Ge (x nm)]3 with different x are fabricated. Their behaviors of crystallization are investigated by measuring sheet resistance and coherent phonon spectroscopy, which show that the crystallization temperature (TC) of these films increases anomalously with x, rather than decreases as the interfacial effects model predicted. A new stress effect is proposed to explain the anomalous increase in TC with x. Raman spectroscopy reveals that Raman shifts of all phonon modes in SLL films deviate from their respective standard Raman shifts in stress-free crystalline films, confirming the presence of stress in SLL films. It is also shown that tensile and compressive stresses exist in Ge and Ge8Sb92 layers, respectively, which agrees with the lattice mismatch between the Ge and Ge8Sb92 constituent layers. It is also found that the stress reduces with increasing x. Such a thickness dependence of stress can be used to explain the increase in crystallization temperature of four SLL films with x according to stress-enhanced crystallization. Our results reveal a new mechanism to affect the crystallization behaviors of SLL phase-change films besides interfacial effect. Stress and interfacial effects actually coexist and compete in SLL films, which can be used to explain the reported anomalous change in crystallization temperature with the film thickness and cycle number of periods in SLL phase-change films.


2007 ◽  
Vol 22 (9) ◽  
pp. 2531-2538 ◽  
Author(s):  
Mei Chee Tan ◽  
Jackie Y. Ying ◽  
Gan Moog Chow

Near infrared (NIR) absorbing nanoparticles synthesized by the reduction of HAuCl4 with Na2S exhibited absorption bands at ∼530 nm, and in the NIR region of 650–1100 nm. The NIR optical properties were not found to be related to the earlier proposed Au2S–Au core-shell microstructure in previous studies. From a detailed study of the structure and microstructure of as-synthesized particles in this work, S-containing, Au-rich, multiply-twinned nanoparticles were found to exhibit NIR absorption. They consisted of amorphous AuxS (where x = 2), mostly well mixed within crystalline Au, with a small degree of surface segregation of S. Therefore, NIR absorption was likely due to interfacial effects on particle polarization from the introduction of AuxS into Au particles, and not the dielectric confinement of plasmons associated with a core-shell microstructure.


Sign in / Sign up

Export Citation Format

Share Document