Predicting Carcinogenicity: Peroxisome Proliferators

2021 ◽  
pp. 337-360
Author(s):  
Jonathan D. Tugwood ◽  
Clifford R. Elcombe
Author(s):  
Tripathi RB ◽  
Jain J ◽  
Siddiqui AW

The Peroxisome proliferators-activated receptors (PPARs) are one of the nuclear fatty acid receptors, which contain a type II zincfinger DNA binding pattern and a hydrophobic ligand binding pocket. These receptors are thought to play an essential role in metabolic diseasessuch as obesity, insulin resistance, and coronary artery disease. Therefore Peroxisome Proliferators-Activated Receptor (PPARγ) activators havedrawn great recent attention in the clinical management of type 2 diabetes mellitus, prompting several attempts to discover and optimize newPPARγ activators. Objective: The aim of the study was to finding new selective human PPARγ (PPARγ) modulators that are able to improveglucose homeostasis with reduced side effects compared with TZDs and identify the specific molecular descriptor and structural constraint toimprove the agonist activity of PPARγ analogs. Material and Method: Software’s that was used for this study include S.P. Gupta QSARsoftware (QSAR analysis), Valstat (Comparative QSAR analysis and calculation of L-O-O, Q2, r2, Spress), BILIN (Comparative QSAR analysisand calculation of Q2, r, S, Spress, and F), etc., allowing directly performing statistical analysis. Then multiple linear regression based QSARsoftware (received from BITS-Pilani, India) generates QSAR equations. Result and Discussion: In this study, we explored the quantitativestructure–activity relationship (QSAR) study of a series of meta-substituted Phenyl-propanoic acids as Peroxisome Proliferators Gamma activatedreceptor agonists (PPARγ).The activities of meta-substituted Phenyl-propanoic acids derivatives correlated with various physicochemical, electronic and steric parameters.Conclusion: The identified QSAR models highlighted the significance of molar refractivity and hydrophobicity to the biological activity.


1990 ◽  
Vol 9 (6) ◽  
pp. 397-401 ◽  
Author(s):  
K.N. Woodward

1 Phthalate esters are known to cause hepatic peroxisome proliferation in rodents and, after prolonged administration, hepatocarcinogenesis. Peroxisome proliferators as a group are hepatocarcinogenic. The mechanism is not known but it does not appear to involve a direct genotoxic element. 2 DEHP and DBP have been shown to cause renal cysts in rodents and they also produce renal peroxisome proliferation. There are no data to causally link the two phenomena. 3 Although renal cysts have been noted in haemodialysis patients and haemodialysis is a route of exposure to DEHP, there are no data to suggest a cause and effect relationship. 4 More studies are needed on the mechanism of renal cystogenesis.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
W Li ◽  
S.D Gao ◽  
B Hua ◽  
Q.B Liu ◽  
H.R Liu ◽  
...  

Abstract Background Voltage-gated K+ (Kv) channels in coronary artery smooth muscle cells (CSMCs), especially the major specific Kv1 subfamily, contribute to coronary artery vasodilation. Advanced glycation end products (AGEs) have been strongly implicated in diabetes-related cardiovascular complications. Our previous study showed AGEs can impair Kv channel-mediated coronary vasodilation by reducing Kv channel activity. However, its underlying mechanism remains unclear. Purpose Here, we used isolated rat small coronary arteries (RSCAs) and primary CSMCs to investigate the effect of AGEs on Kv channel-mediated coronary vasodilation and the possible involvement of peroxisome proliferators-activated receptor (PPAR)-γ pathway. Methods RSCAs and primary CSMCs were isolated, cultured and treated with bovine serum albumin (BSA), AGE-BSA, alagrebrium (ALA, AGE cross-linking breaker), pioglitazone (PIO) and/or GW9662, and then divided into the following groups: DMEM, BSA, AGE, AGE+ALA, AGE+PIO, and AGE+PIO+GW9662. Kv channel-mediated coronary vasodilation was analyzed using wire myograph. Histology and immunohistochemistry of RSCAs were performed. Western blot was used to detect the protein expression of RAGE, the major Kv1 channel subunits expressed in CSMCs (Kv1.2/1.5), PPAR-γ, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-2 (NOX-2). Results AGEs markedly reduced forskolin-induced Kv channel-mediated vasodilation of RSCAs by interacting with the receptor for AGEs (RAGE), and ALA or PIO significantly reversed this effect. In both RSCAs and primary CSMCs, AGEs decreased Kv1.2 and Kv1.5 channel protein expression, inhibited PPAR-γ expression, increased RAGE and NOX-2 expression. Treatment with ALA or PIO partially reversed the effects of AGEs on Kv1.2/Kv1.5 expression, accompanied by elevation of PPAR-γ level and diminished oxidative stress. Conclusion AGE/RAGE axis-induced inhibition of PPAR-γ pathway and enhancement of oxidative stress may contribute to AGEs-mediated Kv channel dysfunction and coronary vasodilation in RSCAs. Our results may provide new insights into developing therapeutic strategies to manage diabetic vasculature. Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): National Natural Science Foundation of China; Natural Science Foundation of Beijing (7172059)


1994 ◽  
Vol 8 (4) ◽  
pp. 521-523 ◽  
Author(s):  
B.G. Lake ◽  
J.A. Beamand ◽  
M.E. Cunninghame ◽  
S. Davies ◽  
H. Mistry ◽  
...  

1990 ◽  
Vol 173 (3) ◽  
pp. 855-861 ◽  
Author(s):  
Mustapha Cherkaoui Malki ◽  
Yu Chun Lone ◽  
Marisol Corral-Debrinski ◽  
Norbert Latruffe

Sign in / Sign up

Export Citation Format

Share Document