Magnetic Nanomaterials for Wastewater Remediation

Author(s):  
Dimple Sharma ◽  
Sonika Singh ◽  
Jandeep Singh ◽  
Harminder Singh
2021 ◽  
pp. 279-308
Author(s):  
Ramalingam Suhasini ◽  
Viruthachalam Thiagarajan

2013 ◽  
Vol 30 (8) ◽  
pp. 927
Author(s):  
Li ZHANG ◽  
Jian ZHANG ◽  
Zulei ZHANG ◽  
Haiqing LIU ◽  
Lei LI

2019 ◽  
Vol 15 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Swapnil Gaikwad ◽  
Avinash P. Ingle ◽  
Silvio Silverio da Silva ◽  
Mahendra Rai

Background: Enzymatic hydrolysis of cellulose is an expensive approach due to the high cost of an enzyme involved in the process. The goal of the current study was to apply magnetic nanomaterials as a support for immobilization of enzyme, which helps in the repeated use of immobilized enzyme for hydrolysis to make the process cost-effective. In addition, it will also provide stability to enzyme and increase its catalytic activity. Objective: The main aim of the present study is to immobilize cellulase enzyme on Magnetic Nanoparticles (MNPs) in order to enable the enzyme to be re-used for clean sugar production from cellulose. Methods: MNPs were synthesized using chemical precipitation methods and characterized by different techniques. Further, cellulase enzyme was immobilized on MNPs and efficacy of free and immobilized cellulase for hydrolysis of cellulose was evaluated. Results: Enzymatic hydrolysis of cellulose by immobilized enzyme showed enhanced catalytic activity after 48 hours compared to free enzyme. In first cycle of hydrolysis, immobilized enzyme hydrolyzed the cellulose and produced 19.5 ± 0.15 gm/L of glucose after 48 hours. On the contrary, free enzyme produced only 13.7 ± 0.25 gm/L of glucose in 48 hours. Immobilized enzyme maintained its stability and produced 6.15 ± 0.15 and 3.03 ± 0.25 gm/L of glucose in second and third cycle, respectively after 48 hours. Conclusion: This study will be very useful for sugar production because of enzyme binding efficiency and admirable reusability of immobilized enzyme, which leads to the significant increase in production of sugar from cellulosic materials.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3209
Author(s):  
Aphiwe Siyasanga Gugushe ◽  
Anele Mpupa ◽  
Tshimangadzo Saddam Munonde ◽  
Luthando Nyaba ◽  
Philiswa Nosizo Nomngongo

In this study, Fe3O4-ZrO2 functionalized with 3-aminopropyltriethoxysilane (Fe3O4-ZrO2@APS) nanocomposite was investigated as a nanoadsorbent for the removal of Cd(II), Cu(II), Mn (II) and Ni(II) ions from aqueous solution and real samples in batch mode systems. The prepared magnetic nanomaterials were characterized using X-ray powder diffraction (XRD), scanning electron microscopy/energy dispersion x-ray (SEM/EDX) Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Factors (such as adsorbent dose and sample pH) affecting the adsorption behavior of the removal process were studied using the response surface methodology. Under optimized condition, equilibrium data obtained were fitted into the Langmuir and Freundlich isotherms and the data fitted well with Langmuir isotherms. Langmuir adsorption capacities (mg/g) were found to be 113, 111, 128, and 123 mg/g for Cd, Cu, Ni and Mn, respectively. In addition, the adsorption kinetics was analyzed using five kinetic models, pseudo-first order, pseudo-second order, intraparticle diffusion and Boyd models. The adsorbent was successfully applied for removal of Cd(II), Cu(II), Mn (II) and Ni(II) ions in wastewater samples.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1184
Author(s):  
Maria Cantarella ◽  
Giuliana Impellizzeri ◽  
Alessandro Di Mauro ◽  
Vittorio Privitera ◽  
Sabrina Carola Carroccio

The immobilization of inorganic nanomaterials on polymeric substrates has been drawing a lot of attention in recent years owing to the extraordinary properties of the as-obtained materials. The hybrid materials, indeed, combine the benefits of the plastic matter such as flexibility, low-cost, mechanical stability and high durability, with them deriving from their inorganic counterparts. In particular, if the inorganic fillers are nanostructured photocatalysts, the originated hybrid systems will be able to utilize the energy delivered by light, catalysing chemical reactions in a sustainable pathway. Most importantly, since the nanofillers can be ad-hoc anchored to the macromolecular structure, their release in the environment will be prevented, thus overcoming one of the main restrictions that impedes their applications on a large scale. In this review, several typologies of hybrid photocatalytic nanomaterials, obtained by using both organic and inorganic semiconductors and realized with different synthetic protocols, were reported and discussed. In the first part of the manuscript, nanocomposites realized by simply blending the TiO2 or ZnO nanomaterials in thermoplastic polymeric matrices are illustrated. Subsequently, the atomic layer deposition (ALD) technique is presented as an excellent method to formulate polymeric nanocomposites. Successively, some examples of polyporphyrins hybrid systems containing graphene, acting as photocatalysts under visible light irradiation, are discussed. Lastly, photocatalytic polymeric nanosponges, with extraordinary adsorption properties, are shown. All the described materials were deeply characterized and their photocatalytic abilities were evaluated by the degradation of several organic water pollutants such as dyes, phenol, pesticides, drugs, and personal care products. The antibacterial performance was also evaluated for selected systems. The relevance of the obtained results is widely overviewed, opening the route for the application of such multifunctional photocatalytic hybrid materials in wastewater remediation.


Author(s):  
Yifan Jia ◽  
Congyi Yang ◽  
Xueyang Chen ◽  
Wenqing Xue ◽  
Helena Jayne Hutchins-Crawford ◽  
...  

Magnetic materials display attractive properties for a wide range of applications. More recently, interest has turned to significantly enhancing their behaviour for advanced technologies, by exploiting the remarkable advantages that...


2021 ◽  
Vol 771 ◽  
pp. 138482
Author(s):  
Daiane R.S. Cruz ◽  
Iris A.A. Silva ◽  
Rhayza V.M. Oliveira ◽  
Marco A.P. Buzinaro ◽  
Benilde F.O. Costa ◽  
...  

2021 ◽  
pp. 150542
Author(s):  
Nimra Nadeem ◽  
Qamar Abbas ◽  
Muhammad Yaseen ◽  
Asim Jilani ◽  
Muhammad Zahid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document