Prediction and Classification Analysis of Type-2 Diabetes Using Machine Learning Approaches

2021 ◽  
pp. 121-132
Author(s):  
Ritu Aggarwal ◽  
Zdzislaw Polkowski
2020 ◽  
Author(s):  
Ada Admin ◽  
Jialing Huang ◽  
Cornelia Huth ◽  
Marcela Covic ◽  
Martina Troll ◽  
...  

Early and precise identification of individuals with pre-diabetes and type 2 diabetes (T2D) at risk of progressing to chronic kidney disease (CKD) is essential to prevent complications of diabetes. Here, we identify and evaluate prospective metabolite biomarkers and the best set of predictors of CKD in the longitudinal, population-based Cooperative Health Research in the Region of Augsburg (KORA) cohort by targeted metabolomics and machine learning approaches. Out of 125 targeted metabolites, sphingomyelin (SM) C18:1 and phosphatidylcholine diacyl (PC aa) C38:0 were identified as candidate metabolite biomarkers of incident CKD specifically in hyperglycemic individuals followed during 6.5 years. Sets of predictors for incident CKD developed from 125 metabolites and 14 clinical variables showed highly stable performances in all three machine learning approaches and outperformed the currently established clinical algorithm for CKD. The two metabolites in combination with five clinical variables were identified as the best set of predictors and their predictive performance yielded a mean area value under the receiver operating characteristic curve of 0.857. The inclusion of metabolite variables in the clinical prediction of future CKD may thus improve the risk prediction in persons with pre- and T2D. The metabolite link with hyperglycemia-related early kidney dysfunction warrants further investigation.


2020 ◽  
Author(s):  
Ada Admin ◽  
Jialing Huang ◽  
Cornelia Huth ◽  
Marcela Covic ◽  
Martina Troll ◽  
...  

Early and precise identification of individuals with pre-diabetes and type 2 diabetes (T2D) at risk of progressing to chronic kidney disease (CKD) is essential to prevent complications of diabetes. Here, we identify and evaluate prospective metabolite biomarkers and the best set of predictors of CKD in the longitudinal, population-based Cooperative Health Research in the Region of Augsburg (KORA) cohort by targeted metabolomics and machine learning approaches. Out of 125 targeted metabolites, sphingomyelin (SM) C18:1 and phosphatidylcholine diacyl (PC aa) C38:0 were identified as candidate metabolite biomarkers of incident CKD specifically in hyperglycemic individuals followed during 6.5 years. Sets of predictors for incident CKD developed from 125 metabolites and 14 clinical variables showed highly stable performances in all three machine learning approaches and outperformed the currently established clinical algorithm for CKD. The two metabolites in combination with five clinical variables were identified as the best set of predictors and their predictive performance yielded a mean area value under the receiver operating characteristic curve of 0.857. The inclusion of metabolite variables in the clinical prediction of future CKD may thus improve the risk prediction in persons with pre- and T2D. The metabolite link with hyperglycemia-related early kidney dysfunction warrants further investigation.


2021 ◽  
Author(s):  
Shula Shazman

Intermittent fasting (IF) is the cycling between periods of eating and fasting. The two most popular forms of IER are: the 5: 2 diet characterized by two consecutive or non-consecutive “fast” days and the alternate-day energy restriction, commonly called alternate-day fasting (ADF). The second form is time-restricted feeding (TRF), eating within specific time frames such as the most prevalent 16: 8 diet, with 16 hours of fasting and 8 hours for eating. It is already known that IF can bring about changes in metabolic parameters related with type 2 diabetes (T2D). Furthermore, IF can be effective in improving health by reducing metabolic disorders and age-related diseases. However, it is not clear yet whether the age at which fasting begins, gender and severity of T2D influence on the effectiveness of the different types of IF in reducing metabolic disorders. In this chapter I will present the risk factors of T2D, the different types of IF interventions and the research-based knowledge regarding the effect of IF on T2D. Furthermore, I will describe several machine learning approaches to provide a recommendation system which reveals a set of rules that can assist selecting a successful IF intervention for a personal case. Finally, I will discuss the question: Can we predict the optimal IF intervention for a prediabetes patient?


Author(s):  
Ram D. Joshi ◽  
Chandra K. Dhakal

Diabetes mellitus is one of the most common human diseases worldwide and may cause several health-related complications. It is responsible for considerable morbidity, mortality, and economic loss. A timely diagnosis and prediction of this disease could provide patients with an opportunity to take the appropriate preventive and treatment strategies. To improve the understanding of risk factors, we predict type 2 diabetes for Pima Indian women utilizing a logistic regression model and decision tree—a machine learning algorithm. Our analysis finds five main predictors of type 2 diabetes: glucose, pregnancy, body mass index (BMI), diabetes pedigree function, and age. We further explore a classification tree to complement and validate our analysis. The six-fold classification tree indicates glucose, BMI, and age are important factors, while the ten-node tree implies glucose, BMI, pregnancy, diabetes pedigree function, and age as the significant predictors. Our preferred specification yields a prediction accuracy of 78.26% and a cross-validation error rate of 21.74%. We argue that our model can be applied to make a reasonable prediction of of type 2 diabetes, and could potentially be used to complement existing preventive measures to curb the incidence of diabetes and reduce associated costs.


Author(s):  
Yue You ◽  
Svetlana V. Doubova ◽  
Diana Pinto-Masis ◽  
Ricardo Pérez-Cuevas ◽  
Víctor Hugo Borja-Aburto ◽  
...  

Abstract Background The study aimed to assess the performance of a multidisciplinary-team diabetes care program called DIABETIMSS on glycemic control of type 2 diabetes (T2D) patients, by using available observational patient data and machine-learning-based targeted learning methods. Methods We analyzed electronic health records and laboratory databases from the year 2012 to 2016 of T2D patients from six family medicine clinics (FMCs) delivering the DIABETIMSS program, and five FMCs providing routine care. All FMCs belong to the Mexican Institute of Social Security and are in Mexico City and the State of Mexico. The primary outcome was glycemic control. The study covariates included: patient sex, age, anthropometric data, history of glycemic control, diabetic complications and comorbidity. We measured the effects of DIABETIMSS program through 1) simple unadjusted mean differences; 2) adjusted via standard logistic regression and 3) adjusted via targeted machine learning. We treated the data as a serial cross-sectional study, conducted a standard principal components analysis to explore the distribution of covariates among clinics, and performed regression tree on data transformed to use the prediction model to identify patient sub-groups in whom the program was most successful. To explore the robustness of the machine learning approaches, we conducted a set of simulations and the sensitivity analysis with process-of-care indicators as possible confounders. Results The study included 78,894 T2D patients, from which 37,767patients received care through DIABETIMSS. The impact of DIABETIMSS ranged, among clinics, from 2 to 8% improvement in glycemic control, with an overall (pooled) estimate of 5% improvement. T2D patients with fewer complications have more significant benefit from DIABETIMSS than those with more complications. At the FMC’s delivering the conventional model the predicted impacts were like what was observed empirically in the DIABETIMSS clinics. The sensitivity analysis did not change the overall estimate average across clinics. Conclusions DIABETIMSS program had a small, but significant increase in glycemic control. The use of machine learning methods yields both population-level effects and pinpoints the sub-groups of patients the program benefits the most. These methods exploit the potential of routine observational patient data within complex healthcare systems to inform decision-makers.


2020 ◽  
Author(s):  
Ada Admin ◽  
Jialing Huang ◽  
Cornelia Huth ◽  
Marcela Covic ◽  
Martina Troll ◽  
...  

Early and precise identification of individuals with pre-diabetes and type 2 diabetes (T2D) at risk of progressing to chronic kidney disease (CKD) is essential to prevent complications of diabetes. Here, we identify and evaluate prospective metabolite biomarkers and the best set of predictors of CKD in the longitudinal, population-based Cooperative Health Research in the Region of Augsburg (KORA) cohort by targeted metabolomics and machine learning approaches. Out of 125 targeted metabolites, sphingomyelin (SM) C18:1 and phosphatidylcholine diacyl (PC aa) C38:0 were identified as candidate metabolite biomarkers of incident CKD specifically in hyperglycemic individuals followed during 6.5 years. Sets of predictors for incident CKD developed from 125 metabolites and 14 clinical variables showed highly stable performances in all three machine learning approaches and outperformed the currently established clinical algorithm for CKD. The two metabolites in combination with five clinical variables were identified as the best set of predictors and their predictive performance yielded a mean area value under the receiver operating characteristic curve of 0.857. The inclusion of metabolite variables in the clinical prediction of future CKD may thus improve the risk prediction in persons with pre- and T2D. The metabolite link with hyperglycemia-related early kidney dysfunction warrants further investigation.


Diabetes ◽  
2020 ◽  
Vol 69 (12) ◽  
pp. 2756-2765
Author(s):  
Jialing Huang ◽  
Cornelia Huth ◽  
Marcela Covic ◽  
Martina Troll ◽  
Jonathan Adam ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1383
Author(s):  
Sakifa Aktar ◽  
Ashis Talukder ◽  
Md. Martuza Ahamad ◽  
A. H. M. Kamal ◽  
Jahidur Rahman Khan ◽  
...  

Providing appropriate care for people suffering from COVID-19, the disease caused by the pandemic SARS-CoV-2 virus, is a significant global challenge. Many individuals who become infected may have pre-existing conditions that may interact with COVID-19 to increase symptom severity and mortality risk. COVID-19 patient comorbidities are likely to be informative regarding the individual risk of severe illness and mortality. Determining the degree to which comorbidities are associated with severe symptoms and mortality would thus greatly assist in COVID-19 care planning and provision. To assess this we performed a meta-analysis of published global literature, and machine learning predictive analysis using an aggregated COVID-19 global dataset. Our meta-analysis suggested that chronic obstructive pulmonary disease (COPD), cerebrovascular disease (CEVD), cardiovascular disease (CVD), type 2 diabetes, malignancy, and hypertension as most significantly associated with COVID-19 severity in the current published literature. Machine learning classification using novel aggregated cohort data similarly found COPD, CVD, CKD, type 2 diabetes, malignancy, and hypertension, as well as asthma, as the most significant features for classifying those deceased versus those who survived COVID-19. While age and gender were the most significant predictors of mortality, in terms of symptom–comorbidity combinations, it was observed that Pneumonia–Hypertension, Pneumonia–Diabetes, and Acute Respiratory Distress Syndrome (ARDS)–Hypertension showed the most significant associations with COVID-19 mortality. These results highlight the patient cohorts most likely to be at risk of COVID-19-related severe morbidity and mortality, which have implications for prioritization of hospital resources.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1158-P
Author(s):  
LI CHEN ◽  
LINGGE FENG ◽  
CUI TANG ◽  
YI ZHANG

Sign in / Sign up

Export Citation Format

Share Document