Ionic Mechanisms of the Resting Potential and Quinine-Induced Receptor Potential in Frog Taste Cells

2021 ◽  
pp. 115-136
Author(s):  
Toshihide Sato ◽  
Yukio Okada ◽  
Takenori Miyamoto
1988 ◽  
Vol 405 (1) ◽  
pp. 699-711 ◽  
Author(s):  
T Miyamoto ◽  
Y Okada ◽  
T Sato

1969 ◽  
Vol 54 (3) ◽  
pp. 310-330 ◽  
Author(s):  
Ronald Millecchia ◽  
Alexander Mauro

The ventral photoreceptors of Limulus polyphemus are unipolar cells with large, ellipsoidal somas located long both "lateral olfactory nerves." As a consequence of their size and location, the cells are easily impaled with microelectrodes. The cells have an average resting potential of -48 mv. The resting potential is a function of the external concentration of K. When the cell is illuminated, it gives rise to the typical "receptor potential" seen in most invertebrate photoreceptors which consists of a transient phase followed by a maintained phase of depolarization. The amplitude of the transient phase depends on both the state of adaptation of the cell and the intensity of the illumination, while the amplitude of the maintained phase depends only on the intensity of the illumination. The over-all size of the receptor potential depends on the external concentration of Na, e.g. in sodium-free seawater the receptor potential is markedly reduced, but not abolished. On the other hand lowering the Ca concentration produces a marked enhancement of both components of the response, but predominantly of the steady-state component. Slow potential fluctuations are seen in the dark-adapted cell when it is illuminated with a low intensity light. A spike-like regenerative process can be evoked by either the receptor potential or a current applied via a microelectrode. No evidence of impulse activity has been found in the axons of these cells. The ventral photoreceptor cell has many properties in common with a variety of retinular cells and therefore should serve as a convenient model of the primary receptor cell in many invertebrate eyes.


1999 ◽  
Vol 81 (1) ◽  
pp. 307-318 ◽  
Author(s):  
Hervé Le Corronc ◽  
Bernard Hue ◽  
Robert M. Pitman

Le Corronc, Hervé, Bernard Hue, and Robert M. Pitman. Ionic mechanisms underlying depolarizing responses of an identified insect motor neuron to short periods of hypoxia. J. Neurophysiol. 81: 307–318, 1999. Hypoxia can dramatically disrupt neural processing because energy-dependent homeostatic mechanisms are necessary to support normal neuronal function. In a human context, the long-term effects of such disruption may become all too apparent after a “stroke,” in which blood-flow to part of the brain is compromised. We used an insect preparation to investigate the effects of hypoxia on neuron membrane properties. The preparation is particularly suitable for such studies because insects respond rapidly to hypoxia, but can recover when they are restored to normoxic conditions, whereas many of their neurons are large, identifiable, and robust. Experiments were performed on the “fast” coxal depressor motoneuron (Df) of cockroach ( Periplaneta americana). Five-minute periods of hypoxia caused reversible multiphasic depolarizations (10–25 mV; n = 88), consisting of an initial transient depolarization followed by a partial repolarization and then a slower phase of further depolarization. During the initial depolarizing phase, spontaneous plateau potentials normally occurred, and inhibitory postsynaptic potential frequency increased considerably; 2–3 min after the onset of hypoxia all electrical activity ceased and membrane resistance was depressed. On reoxygenation, the membrane potential began to repolarize almost immediately, becoming briefly more negative than the normal resting potential. All phases of the hypoxia response declined with repeated periods of hypoxia. Blockade of ATP-dependent Na/K pump by 30 μM ouabain suppressed only the initial transient depolarization and the reoxygenation-induced hyperpolarization. Reduction of aerobic metabolism between hypoxic periods (produced by bubbling air through the chamber instead of oxygen) had a similar effect to that of ouabain. Although the depolarization seen during hypoxia was not reduced by tetrodotoxin (TTX; 2 μM), lowering extracellular Na+ concentration or addition of 500 μM Cd2+ greatly reduced all phases of the hypoxia-induced response, suggesting that Na influx occurs through a TTX-insensitive Cd2+-sensitive channel. Exposure to 20 mM tetraethylammonium and 1 mM 3,4-diaminopyridine increased the amplitude of the hypoxia-induced depolarization, suggesting that activation of K channels may normally limit the amplitude of the hypoxia response. In conclusion we suggest that the slow hypoxia-induced depolarization on motoneuron Df is mainly carried by a TTX-resistant, Cd2+-sensitive sodium influx. Ca2+ entry may also make a direct or indirect contribution to the hypoxia response. The fast transient depolarization appears to result from block of the Na/K pump, whereas the reoxygenation-induced hyperpolarization is largely caused by its subsequent reactivation.


2006 ◽  
Vol 96 (5) ◽  
pp. 2189-2199 ◽  
Author(s):  
J. H. Sun ◽  
B. Yang ◽  
D. F. Donnelly ◽  
C. Ma ◽  
R. H. LaMotte

Previous experimental results from our laboratory demonstrated that monocyte chemoattractant protein-1 (MCP-1) depolarizes or increases the excitability of nociceptive neurons in the intact dorsal root ganglion (DRG) after a chronic compression of the DRG (CCD), an injury that upregulates neuronal expression of both MCP-1 and mRNA for its receptor CCR2. We presently explore the ionic mechanisms underlying the excitatory effects of MCP-1. MCP-1 (100 nM) was applied, after CCD, to acutely dissociated small DRG neurons with nociceptive properties. Under current clamp, the proportion of neurons depolarized was similar to that previously observed for CCD-treated neurons in the intact ganglion, although the magnitude of depolarization was greater. MCP-1 induced a decrease in rheobase by 44 ± 10% and some cells became spontaneously active at resting potential. Action potential width at a voltage equal to 10% of the peak height was increased from 4.94 ± 0.23 to 5.90 ± 0.47 ms. In voltage clamp, MCP-1 induced an inward current in 27 of 50 neurons held at −60 mV, which increased with concentration over the range of 3 to 300 nM (EC50= 45 nM). The MCP-1–induced current was not voltage dependent and had an estimated reversal potential of −27 mV. In addition, MCP-1 inhibited a voltage-dependent, noninactivating outward current, presumably a delayed rectifier type K+conductance. We conclude that MCP-1 enhances excitability in CCD neurons by, at least, two mechanisms: 1) activation of a nonvoltage-dependent depolarizing current with characteristics similar to a nonselective cation conductance and 2) inhibition of a voltage-dependent outward current.


1993 ◽  
Vol 174 (1) ◽  
pp. 1-17
Author(s):  
Y Okada ◽  
T Miyamoto ◽  
T Sato

The ionic mechanism underlying the receptor potential induced by a deionized water stimulus was studied in frog taste cells with conventional microelectrodes. The taste cells located in the proximal portion of the tongue generated a depolarizing receptor potential which averaged 10mV in response to stimulation with deionized water. The cell membrane of the water-sensitive taste cell could be divided into the taste-receptive (apical) and basolateral membranes and the cells were classified into two types: Cl(-)-dependent and Cl(-)-independent. In Cl(-)-dependent cells whose input resistance was decreased or unchanged by deionized water, the magnitude of the water-induced depolarization decreased with an increase in concentration of superficial Cl- in contact with the receptive membrane and with addition of blockers of anion channels (0.1 mmol l-1 SITS and 0.1 mmol l-1 DIDS) to deionized water. The reversal potential for the depolarization in this type shifted according to the concentration of superficial Cl-. These properties of the responses were consistent with those of the glossopharyngeal nerve which innervates the taste disc. In Cl(-)-independent cells whose input resistance was increased by deionized water, the reversal potential was approximately equal to the equilibrium potential for K+ at the basolateral membrane. The water-induced response of the glossopharyngeal nerve was decreased to about 60% of the control value by addition of interstitial 2 mmol l-1 Ba2+. It is concluded that the water-induced receptor potential is produced by Cl- secretion through the taste-receptive membrane in about 70% of water-sensitive frog taste cells, while it is generated by an inhibition of the resting K+ conductance of the basolateral membrane in the remaining 30% of the cells.


2000 ◽  
Vol 83 (5) ◽  
pp. 2844-2853 ◽  
Author(s):  
Shih-Chieh Chuang ◽  
Riccardo Bianchi ◽  
Robert K. S. Wong

A unique property of the group I metabotropic glutamate receptor (mGluR)-induced depolarization in hippocampal cells is that the amplitude of the depolarization is larger when the response is elicited at more depolarized membrane potentials. Our understanding of the conductance mechanism underlying this voltage-dependent response is incomplete. Through the use of current-clamp and single-electrode voltage-clamp recordings in guinea pig hippocampal slices, we examined the group I mGluR-induced depolarization in CA3 pyramidal cells. The group I mGluR agonists ( S)-3-hydroxyphenylglycine and ( S)-3,5-dihydroxyphenylglycine turned on a voltage-gated inward current ( I mGluR(V)), which was pharmacologically distinct from the voltage-gated sodium and calcium currents intrinsic to the cells. I mGluR(V)was a slowly activating, noninactivating current with a threshold at about −75 mV. In addition to the activation of I mGluR(V), group I mGluR stimulation also produced a voltage-independent decrease in the K+conductance. Our results suggest that the depolarization induced by group I mGluR activation is generated by two ionic mechanisms—a heretofore unrecognized voltage-gated inward current ( I mGluR(V)) that is turned on by depolarization and a voltage-insensitive inward current that results from a turn-off of the K+ conductance. The low-threshold and noninactivating properties of I mGluR(V)allow the current to play a significant role in setting the resting potential and firing pattern of CA3 pyramidal cells.


1988 ◽  
pp. 64-95
Author(s):  
George N. Akoev ◽  
Boris V. Krylov ◽  
Nikolai P. Alekseev

1999 ◽  
Vol 202 (8) ◽  
pp. 977-986
Author(s):  
C.S. Cobb ◽  
R. Williamson

Intracellular recordings were made from extraocular photoreceptor cells within isolated epistellar bodies of the lesser or northern octopus Eledone cirrhosa. The cells had resting potentials around −41+/−5 mV (mean +/− s.d., N=60) and showed light-flash-induced membrane depolarisation. The evoked response to a brief light flash consisted of a transient peak depolarisation, followed by a plateau component. The magnitude of the light-induced peak depolarisation response was decreased by bathing the epistellar body in artificial sea water (ASW) low in Na+, where choline+ replaced Na+, or by passing steady depolarising current. Replacement of external Na+ by Li+ had no effect on the light-stimulated response. The external application of the Na+ channel blocker tetrodotoxin (3 micromol l-1) increased the light-evoked response, but this was accompanied by a loss of action potential activity. The amplitude and duration of the response to a light flash was increased by bathing the epistellar body in ASW low in Ca2+, or in ASW containing 10 mmol l-1 Co2+, and after intracellular microinjection of the Ca2+ buffer EGTA. Intracellular microinjection of Ca2+ or inositol 1,4,5-trisphosphate, or external application of the phospholipase C inhibitor U-73122, had no apparent effect on the light-evoked response. These results are consistent with the interpretation that (1) the majority of the light-induced inward current is carried by Na+, probably via a non-selective cation channel, and (2) an increase in the intracellular free Ca2+ concentration, mediated by the phototransduction process, is involved in regulating the light-induced inward photocurrent and thus, in effect, determines the amplitude, time course and sensitivity of the receptor potential.


1973 ◽  
Vol 53 (2) ◽  
pp. 455-457 ◽  
Author(s):  
Toshihide Sato ◽  
Lloyd M. Beidler

1976 ◽  
Vol 67 (4) ◽  
pp. 417-431 ◽  
Author(s):  
A R Adolph

Serotonin (5-HT) perfusion of a thin section of Limulus lateral eye hyperpolarizes retinular and eccentric cell membrane potential, and blocks spike action potentials fired by the eccenteric cell. The indoleamine does not directly affect retinular cell receptor potential or eccenteric cell generator potential in response to light stimuli. LSD perfusion blocks both this inhibitory action of 5-HT and light-evoked, synaptically mediated, lateral inhibition. Iontophoretic application of 5-HT to the synaptic neuropil produces shorter latency and duration and larger amplitude of inhibition than does the perfusion technique. This inhibition is dose dependent; the accompanying inhibitory postsynaptic potential (IPSP) appears to have an equilibrium potential more hyperpolarized than normal resting potential levels of ca. -50 mV. IPSP amplitude is sensitive to extracellular potassium ion concentration: it increases with decreased [K+]0 and decreases with increased [K+]0. LSD blocks the inhibition produced by iontophoretic application of 5-HT. Interaction between light-evoked, natural synaptic transmitter-mediated IPSP's and 5-HT IPSP's suggests a common postsynaptic receptor or transmitter-receptor-permeability change mechanism.


Sign in / Sign up

Export Citation Format

Share Document