Polymer Entrapment Powders for Topical Delivery

Author(s):  
Arthur A. Sicilino
Keyword(s):  
Author(s):  
Hamid Hussain ◽  
Divya Juyal ◽  
Archana Dhyani

Microsponge and Nanosponge delivery System was originally developed for topical delivery of drugs can also be used for controlled oral delivery of drugs using water soluble and bioerodible polymers. Microsponge delivery system (MDS) can entrap wide range of drugs and then release them onto the skin over a time by difussion mechanism to the skin. It is a unique technology for the controlled release of topical agents and consists of nano or micro porous beads loaded with active agent and also use for oral delivery of drugs using bioerodible polymers.


2020 ◽  
Vol 17 (4) ◽  
pp. 270-278
Author(s):  
Maha Nasr ◽  
Rawan Al-Karaki

Nanotechnology is currently a hot topic in dermatology and nutraceutical/cosmeceutical delivery, owing to the advantages it provides in terms of enhancing the skin permeation of drugs, as well as increasing their therapeutic efficacy in the treatment of different dermatological diseases. There is also a great interest in the topical delivery of nutraceuticals; which are natural compounds with both therapeutic and cosmetic benefits, in order to overcome the side effects of topically applied chemical drugs. Quercetin is a key nutraceutical with topical antioxidant and anti-inflammatory properties which was reported to be effective in the treatment of different dermatological diseases, however, its topical therapeutic activity is hindered by its poor skin penetration. This review highlights the topical applications of quercetin, and summarizes the nanocarrier-based solutions to its percutaneous delivery challenges.


2018 ◽  
Vol 15 (8) ◽  
pp. 1100-1111 ◽  
Author(s):  
Muhammad Z.U. Khan ◽  
Shujaat A. Khan ◽  
Muhammad Ubaid ◽  
Aamna Shah ◽  
Rozina Kousar ◽  
...  

2013 ◽  
Vol 10 (6) ◽  
pp. 656-666 ◽  
Author(s):  
Sandipan Dasgupta ◽  
Surajit Ghosh ◽  
Subhabrata Ray ◽  
Bhaskar Mazumder

2019 ◽  
Vol 15 (1) ◽  
pp. 87-102 ◽  
Author(s):  
Surbhi Dhawan ◽  
Sanju Nanda

Background: Since ancient times, people have been using natural resources for photoprotection purposes. One such highly recognised natural agent is pomegranate seed oil, considered as wonder oil owing to the presence of several beneficial phytoconstituents. </P><P> Objective: The study aimed to establish the photoprotective potential of pomegranate seed oil through various in vitro and biochemical studies along with the formation of nanoemulsion, an efficient topical delivery system for the oil. </P><P> Method: Photo-protective potential of the oil was estimated by determining in vitro antioxidant and anti-inflammatory activity, total phenolic content, anti elastase, antihyaluronidase and anticollagenase activities of the oil. Ultrasonication method was used to formulate nanoemulsions. The optimisation was done following the central composite design. The characterisation was done by particle size analysis, zeta potential, polydispersity index, pH, viscosity, stability testing and transmission electron microscopy. The optimised nanoemulsion was loaded into a gel base for topical application and further release studies were carried out. </P><P> Results: The IC50 values of anti-elastase, anti-collagenase and anti-hyaluronidase were found to be 309 mg/ml, 4 mg/ml and 95 mg/ml respectively. The results of anti-oxidant and anti-inflammatory activity were also significant, which thereby established the photo-protective potential of the oil. The optimum batch 2 had particle size 83.90 nm, 0.237 PDI and -5.37 mV zeta potential. The morphology was confirmed by TEM. Batch 2 was incorporated into a gel base and release studies showed 74.12 % release within 7 hours. </P><P> Conclusion: Pomegranate seed oil possesses a potential photo-protective ability. Nanoemulsions proved to be a promising carrier for the topical delivery of the oil.


2020 ◽  
Vol 12 ◽  
Author(s):  
Shivani Verma ◽  
Sukhjinder Kaur ◽  
Lalit Kumar

Background: HQ is used for hyper-pigmentation treatment using conventional creams and gels. These formulations show various disadvantages like poor skin permeation, allergic reactions, and repeated use decreasing patient compliance. Objectives: The present work involved formulation, statistical optimization, and characterization of nanostructured lipid carriers (NLCs) for efficient topical delivery of hydroquinone (HQ) for hyperpigmentation treatment. Methods: The NLCs were optimized exploring Box–Behnken design (BBD) using three independent variables and two dependent variables. Formulation having the minimum size and maximum drug entrapment was considered as optimized formulation. Optimized formulation was evaluated for drug release followed by its freeze-drying. The freeze-dried formulation was subjected to differential scanning calorimetry (DSC) analysis, X-raydiffraction (XRD) analysis, and Fourier transform-infrared spectroscopy (FT-IR) analysis. Furthermore, NLCs based gel was prepared by using Carbopol 934 as a gelling agent. NLCs based gel was evaluated for skin permeation, skin retention, and skin distribution (through confocal microscopic analysis) using pig ear skin. Results: Optimized NLCs showed smaller particle size [(271.9 ± 9) nm], high drug entrapment [(66.4 ± 1.2) %], tolerable polydispersity index (PDI) (0.221 ± 0.012), and zeta potential [(-25.9± 1.2) mV]. The FT-IR analysis revealed excellent compatibility between HQ and other excipients. The Carbopol 934 gel containing NLCs showed high transdermal flux [(163 ± 16.2) μg/cm2/h], permeability coefficient (0.0326 ± 0.0016), and skin permeation enhancement ratio (3.7 ± 0.4) compared to marketed cream of HQ. The results of confocal microscopic (CLSM) analysis revealed the accumulation of optimized NLCs in the lower epidermal layers of skin. Conclusion: NLCs based gel was considered effective in the topical delivery of HQ to treat hyper-pigmentation due high skin permeation, skin retention, and prolonged release of HQ.


2019 ◽  
Vol 9 (3) ◽  
pp. 222-233
Author(s):  
Divya D. Jain ◽  
Namita D. Desai

Background: Adapalene is a promising third generation retinoid used in the topical treatment of acne vulgaris. However, the major drawback associated with conventional topical therapy of Adapalene is the ‘retinoid reaction’ which is dose-dependent and characterized by erythema, scaling and burning sensation at the application sites. Microparticulate drug delivery can play a major role in reducing side effects and providing better patient compliance due to targeted delivery. Methods: Adapalene microparticles were prepared using quasi emulsion solvent diffusion method. The effects of formulation variables including polymer ratios, amounts of emulsifier, drug loading and process variables such as stirring time and speed on the physical characteristics of microparticles were investigated. The developed microparticles were characterized by DSC and SEM. Adapalene microparticles were incorporated into Carbopol 971 NF gel for ease of topical delivery. Results: Adapalene microparticulate topical gel showed sustained drug release over 8 hours in in vitro studies. The amount of drug retained in the rat skin during ex vivo studies was higher in the microparticulate topical gel (227.43 ± 0.83 µg/cm2) as compared to the marketed formulation (81.4 ± 1.11 µg/cm2) after 8 hours indicating localized and sustained drug action that can be useful in treating acne vulgaris. The safety of optimized Adapalene gel determined by skin irritation studies performed on Sprague Dawley rats showed no irritation potential. Conclusion: Microparticles can provide promising carrier systems to deliver Adapalene, improving patient compliance due to enhanced skin deposition, localized and sustained action with reduced associated irritant effects.


2015 ◽  
Vol 16 (4) ◽  
pp. 889-904 ◽  
Author(s):  
Georgeta Coneac ◽  
Vicenţiu Vlaia ◽  
Ioana Olariu ◽  
Ana Maria Muţ ◽  
Dan Florin Anghel ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document