Heteroepitaxial Growth

2018 ◽  
pp. 75-104
Author(s):  
John E. Ayers
Author(s):  
J.B. Posthill ◽  
R.P. Burns ◽  
R.A. Rudder ◽  
Y.H. Lee ◽  
R.J. Markunas ◽  
...  

Because of diamond’s wide band gap, high thermal conductivity, high breakdown voltage and high radiation resistance, there is a growing interest in developing diamond-based devices for several new and demanding electronic applications. In developing this technology, there are several new challenges to be overcome. Much of our effort has been directed at developing a diamond deposition process that will permit controlled, epitaxial growth. Also, because of cost and size considerations, it is mandatory that a non-native substrate be developed for heteroepitaxial nucleation and growth of diamond thin films. To this end, we are currently investigating the use of Ni single crystals on which different types of epitaxial metals are grown by molecular beam epitaxy (MBE) for lattice matching to diamond as well as surface chemistry modification. This contribution reports briefly on our microscopic observations that are integral to these endeavors.


1996 ◽  
Vol 451 ◽  
Author(s):  
D. Lincot ◽  
M. J. Furlong ◽  
M. Froment ◽  
R. Cortes ◽  
M. C. Bernard

ABSTRACTChalcogenide semiconductors have been deposited epitaxially from aqueous solutions either chemically or electrochemically at growth rates of up to 0.7 μmhr−1. After recalling the basic principles of these deposition processes, results are presented concerning chemically deposited CdS on InP, GaP and CuInSe2 substrates, electrodeposited CdTe on InP, and CdSAnP heterostructures. Characterisation of these structures by RHEED, TEM, HRTEM, and glazing angle X ray diffraction allows to analyse the effects of substrate orientation, polarity, lattice match plus the influence of temperature on epitaxial growth. These results are discussed in terms of self organisation and a site selective growth mechanisms due to the free enegy of formation of each compound.


1991 ◽  
Vol 221 ◽  
Author(s):  
M. Yamamoto ◽  
H. Fukumoto ◽  
Y. Osaka

2013 ◽  
Vol 753 ◽  
pp. 505-509
Author(s):  
Yuichi Sato ◽  
Toshifumi Suzuki ◽  
Hiroyuki Mogami ◽  
Fumito Otake ◽  
Hirotoshi Hatori ◽  
...  

Solid phase growth of thin films of copper (Cu), aluminum (Al) and zinc oxide (ZnO) on single crystalline sapphire and quartz glass substrates were tried by heat-treatments and their crystallization conditions were investigated. ZnO thin films relatively easily recrystallized even when they were deposited on the amorphous quartz glass substrate. On the other hand, Cu and Al thin films hardly recrystallized when they were deposited on the quartz glass substrate. The metal thin films could be recrystallized at only extremely narrow windows of the heat-treatment conditions when they were deposited on the single crystalline sapphire substrate. The window of the solid phase heteroepitaxial growth condition of the Al film was wider than that of the Cu film.


2008 ◽  
Vol 600-603 ◽  
pp. 251-254 ◽  
Author(s):  
Yong Mei Zhao ◽  
Guo Sheng Sun ◽  
Xing Fang Liu ◽  
Jia Ye Li ◽  
Wan Shun Zhao ◽  
...  

Using AlN as a buffer layer, 3C-SiC film has been grown on Si substrate by low pressure chemical vapor deposition (LPCVD). Firstly growth of AlN thin films on Si substrates under varied V/III ratios at 1100oC was investigated and the (002) preferred orientational growth with good crystallinity was obtained at the V/III ratio of 10000. Annealing at 1300oC indicated the surface morphology and crystallinity stability of AlN film. Secondly the 3C-SiC film was grown on Si substrate with AlN buffer layer. Compared to that without AlN buffer layer, the crystal quality of the 3C-SiC film was improved on the AlN/Si substrate, characterized by X-ray diffraction (XRD) and Raman measurements.


1999 ◽  
Vol 61-62 ◽  
pp. 579-582 ◽  
Author(s):  
Y Chen ◽  
K Matsumoto ◽  
Y Nishio ◽  
T Shirafuji ◽  
S Nishino

1989 ◽  
Vol 54 (17) ◽  
pp. 1687-1689 ◽  
Author(s):  
T. P. Humphreys ◽  
C. J. Miner ◽  
J. B. Posthill ◽  
K. Das ◽  
M. K. Summerville ◽  
...  

2001 ◽  
Vol 707 ◽  
Author(s):  
David Montiel ◽  
Judith Müller ◽  
Eugenia Corvera Poiré

ABSTRACTMotivated by the work of Li et al. [1], we have studied the strain induced morphological instability at the submonolayer coverage stage of heteroepitaxial growth on a vicinal substrate with regularly spaced steps. We have performed a linear stability analysis and determined for which conditions of coverage a flat front is unstable and for which conditions it is stable. For low coverages the instability will cause the front to break in an array of islands. Assuming that the fastest growing mode of the instability determines t he properties of the array, we make an estimation of the islands sizes and aspect ratios as well as an estimation of the separation length between islands of the array formed when the dominant mechanism for transport of matter is diffusion of particles along the growing front. These estimations are given as functions of the terrace width and coverage. Since these ones are experimentally controllable parameters, our results could be used to tailor the spontaneous formation of quantum nanostructures.


Sign in / Sign up

Export Citation Format

Share Document