Hot Stamping of Complex-Shaped High-Strength Aluminum Components

Author(s):  
Liliang Wang ◽  
Jun Liu ◽  
Jianguo Lin

Aluminum alloy components are important contribution to lightweight transportations for improving energy efficiency. However, formability of aluminum alloys at room temperature often hinders their further applications in the automotive, rail, or aerospace industries. The solution heat treatment, forming, and in-die quenching (HFQ®) process is an advanced forming technology that performs both forming and heat treatment simultaneously in a single operation. Since its inception, a significant amount of research has been made on the process to develop it further and to assess the feasibility of using it to form components with increasingly complicated geometries, from a growing variety of alloys. This entry summarizes the HFQ® research work, with the emphasis on the development, modeling, and applications of the technology for stamping complex-shaped high-strength aluminum panel components.

2013 ◽  
Vol 535-536 ◽  
pp. 275-278
Author(s):  
Myeong Han Lee ◽  
Young Chul Shin ◽  
Duk Jae Yoon

Tube hydroforming is a metal forming technology that utilizes internal pressure and axial compressive loads to generate designed product shapes with complex sections from tubular materials. The tube hydroforming process has been used in the automotive, aircraft, and bicycle industries for many years. With the pursuit of lighter bicycles, aluminum alloys have been utilized as an alternative to steel. To obtain adequate strength, the aluminum alloys should undergo heat treatment processes before being used. However, the mechanical properties of the alloys vary with the tempering conditions. This paper aims to evaluate the effects of tube hydroforming characteristics on different kinds of tempered aluminum alloys. Based on numerical simulations, suitable tube hydroforming processing conditions for each tempered aluminum alloy are suggested.


2010 ◽  
Vol 168-170 ◽  
pp. 1961-1969 ◽  
Author(s):  
Yuan Qing Wang ◽  
Huan Xin Yuan ◽  
Yong Jiu Shi

Characteristics of aluminum alloys such as light weight, high strength-to-weight ratio and favorable corrosion resistance have brought about a bright application prospect in building structures. Wrought alloys are applicable to common beams and columns, while casting alloys can be fabricated as connectors in point-supported glass curtain wall and joints in spatial latticed structures on account of easy implement of moulding. Because of high strength, outstanding castability and remarkable mechanical properties after heat treatment, ZL111 in aluminum-silicon alloys is regarded as a desirable option. However, aluminum alloys are non-linear materials and their properties vary with casting and heat treatment modes. It is the well-marked distinction between aluminum alloy and ordinary carbon steel that special study on mechanical and fatigue performance is required. ZL111 raw materials were selected, with alloying agent and fabrication processes meeting the requirement of GB/T 1173-1995 standard. After T6 heat treatment process, test coupons were obtained by machining from raw materials. By utilization of electronic universal testing machine and cryogenic box, tensile tests at room temperature and low temperatures were performed. High-circle fatigue tests were carried out to obtain the fatigue performance of the material. Scanning electron microscope (SEM) was introduced to observe morphology of tensile and fatigue fractures. The tests revealed the relationship between mechanical property index and temperature, which indicated that the ZL111-T6 would increase in strength and plasticity. The microstructure of fractures validated and explained the macroscopic results. Furthermore, material strength at room temperature or low temperatures, stiffness and fatigue performance could satisfy bearing and normal serviceability requirement. Because of non existence of ductile-brittle transition temperature, superior corrosion resistance and outstanding castability, ZL111-T6 material is prone to fabricate complicated elements and joints withstanding cryogenic environment instead of carbon steel.


Alloy Digest ◽  
1953 ◽  
Vol 2 (11) ◽  

Abstract NORAL C77S is a high strength, heat treatable, wrought aluminum alloy that is recommended for highly stressed components. It responds to the precipitation hardening heat treatment, producing tensile strengths in excess of all other aluminum alloys. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive, shear, and bearing strength as well as fracture toughness and fatigue. It also includes information on as well as forming, heat treating, machining, and joining. Filing Code: Al-10. Producer or source: Northern Aluminium Company Ltd.


Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Dmitry V. Dzhurinskiy ◽  
Stanislav S. Dautov ◽  
Petr G. Shornikov ◽  
Iskander Sh. Akhatov

In the present investigation, the plasma electrolytic oxidation (PEO) process was employed to form aluminum oxide coating layers to enhance corrosion resistance properties of high-strength aluminum alloys. The formed protective coating layers were examined by means of scanning electron microscopy (SEM) and characterized by several electrochemical techniques, including open circuit potential (OCP), linear potentiodynamic polarization (LP) and electrochemical impedance spectroscopy (EIS). The results were reported in comparison with the bare 6061-O aluminum alloy to determine the corrosion performance of the coated 6061-O alloy. The PEO-treated aluminum alloy showed substantially higher corrosion resistance in comparison with the untreated substrate material. A relationship was found between the coating formation stage, process parameters and the thickness of the oxide-formed layers, which has a measurable influence on enhancing corrosion resistance properties. This study demonstrates promising results of utilizing PEO process to enhance corrosion resistance properties of high-strength aluminum alloys and could be recommended as a method used in industrial applications.


2019 ◽  
Vol 9 (6) ◽  
pp. 1191 ◽  
Author(s):  
Mengmeng Li ◽  
Alexey Lomonosov ◽  
Zhonghua Shen ◽  
Hogeon Seo ◽  
Kyung-Young Jhang ◽  
...  

Nonlinear acoustic techniques are established tools for the characterization of micro-inhomogeneous materials with higher sensitivity, compared to linear ultrasonic techniques. In particular, the evaluation of material elastic quadratic nonlinearity via the detection of the second harmonic generation by acoustic waves is known to provide an assessment of the state variation of heat treated micro-structured materials. We report on the first application for non-destructive diagnostics of material thermal aging of finite-amplitude longitudinal acoustic pulses generated and detected by lasers. Finite-amplitude longitudinal pulses were launched in aluminum alloy samples by deposited liquid-suspended carbon particles layer irradiated by a nanosecond laser source. An out-of-plane displacement at the epicenter of the opposite sample surface was measured by an interferometer. This laser ultrasonic technique provided an opportunity to study the propagation in aluminum alloys of finite-amplitude acoustic pulses with a strain up to 5 × 10−3. The experiments revealed a signature of the hysteretic quadratic nonlinearity of micro-structured material manifested in an increase of the duration of detected acoustic pulses with an increase of their amplitude. The parameter of the hysteretic quadratic nonlinearity of the aluminum alloy (Al6061) was found to be of the order of 100 and to exhibit more than 50% variations in the process of the alloy thermal aging. By comparing the measured parameter of the hysteretic quadratic nonlinearity in aluminum alloys that were subjected to heat-treatment at 220 °C for different times (0 min, 20 min, 40 min, 1 h, 2 h, 10 h, 100 h, and 1000 h), with measurements of yield strength in same samples, it was established that the extrema in the dependence of the hysteretic nonlinearity and of the yield strength of this alloy on heat treatment time are correlated. This experimental observation provides the background for future research with the application goal of suggested nonlinear laser ultrasonic techniques for non-destructive evaluation of alloys’ strength and rigidity in the process of their heat treatment.


2014 ◽  
Vol 1063 ◽  
pp. 237-243
Author(s):  
Zhong De Shan ◽  
Qin Tai Yan ◽  
Chao Jiang ◽  
Wen Juan Rong

Ultra High Strength Steel (UHSS) hot stamping technology is a special process which can enhance the steel tensile strength to 1500MPa. Appling this technology in producing vehicle structure parts can make car lighter and safer. In China there are more and more automobile enterprises adopt this technology. To master and extend the skill, China Academy of Machinery Science & Technology (CAM) have done systematic research, such as the strengthen mechanism of the steel, hot stamping key devices designing, forming and quenching integrated mould designing, stamping process parameters optimization, etc.. By now, CAM has mastered the mass production technology of vehicle parts, which can guarantee its shape and tensile strength, and produced such typical parts as door-beam, B pillar, etc.. The paper is an introduction of the research work and achievement about UHSS hot stamping developed by CAM.


Sign in / Sign up

Export Citation Format

Share Document