The influence of Adjuvants and Environment on Absorption and Translocation of Imazaquin in Pitted Morningglory [Ipomoea Lacunosa (L.)]

2018 ◽  
pp. 273-278
Author(s):  
G. D. Wills ◽  
C. G. McWhorter
Weed Science ◽  
1992 ◽  
Vol 40 (4) ◽  
pp. 503-506 ◽  
Author(s):  
Mark A. Risley ◽  
Lawrence R. Oliver

Pitted morningglory and entireleaf morningglory treated with14C-imazaquin translocated14C to areas above and below the treated leaf. Pitted morningglory absorbed and translocated more14C from14C-imazaquin than entireleaf morningglory. Translocation of14C from root-supplied14C-imazaquin was similar in both species 1 d after treatment, with14C moving rapidly to the shoots. Entireleaf morningglory metabolized slightly more imazaquin than pitted morningglory in treated leaves. Greater tolerance of entireleaf morningglory than pitted morningglory to postemergence applications of imazaquin is attributed to reduced absorption and translocation and increased metabolism of the herbicide in the entireleaf morningglory.


1990 ◽  
Vol 4 (4) ◽  
pp. 900-903 ◽  
Author(s):  
David R. Shaw ◽  
Sunil Ratnayake ◽  
Clyde A. Smith

Field experiments were conducted to evaluate the influence of application timing of imazethapyr and fluazifop-P on rhizome johnsongrass and pitted morningglory control in soybean. Herbicides were applied at three timings keyed to johnsongrass heights of 15, 30, and 60 cm and 3-, 6-, and 9-leaf pitted morningglory. Evaluations 6 wk after the final treatment indicated imazethapyr controlled both species best when applied at the 15-cm johnsongrass growth stage. Increasing imazethapyr rate did not increase control of pitted morningglory, but did increase johnsongrass control at the 15-cm application timing. However, at the 30-cm johnsongrass application timing, increasing the rate from 0.07 to 0.10 kg ha-1improved control of both species. Johnsongrass control with imazethapyr was no more than 64% when applications were delayed to 30-cm or larger johnsongrass. Fluazifop-P controlled johnsongrass well at all timings.


Weed Science ◽  
2009 ◽  
Vol 57 (4) ◽  
pp. 357-361 ◽  
Author(s):  
Wesley J. Everman ◽  
Walter E. Thomas ◽  
James D. Burton ◽  
Alan C. York ◽  
John W. Wilcut

Greenhouse studies were conducted to evaluate absorption, translocation, and metabolism of14C-glufosinate in glufosinate-resistant cotton, nontransgenic cotton, Palmer amaranth, and pitted morningglory. Cotton plants were treated at the four-leaf stage, whereas Palmer amaranth and pitted morningglory were treated at 7.5 and 10 cm, respectively. All plants were harvested at 1, 6, 24, 48, and 72 h after treatment (HAT). Absorption of14C-glufosinate was greater than 85% 24 h after treatment in Palmer amaranth. Absorption was less than 30% at all harvest intervals for glufosinate-resistant cotton, nontransgenic cotton, and pitted morningglory. At 24 HAT, 49 and 12% of radioactivity was translocated to regions above and below the treated leaf, respectively, in Palmer amaranth. Metabolites of14C-glufosinate were detected in all crop and weed species. Metabolism of14C-glufosinate was 16% or lower in nontransgenic cotton and pitted morningglory; however, metabolism rates were greater than 70% in glufosinate-resistant cotton 72 HAT. Intermediate metabolism was observed for Palmer amaranth, with metabolites comprising 20 to 30% of detectable radioactivity between 6 and 72 HAT.


Weed Science ◽  
2007 ◽  
Vol 55 (2) ◽  
pp. 111-118 ◽  
Author(s):  
Jason K. Norsworthy ◽  
Marcos J. Oliveira

Pitted morningglory seed were collected in the fall of 2003 from Blackville, SC, and 2004 from Pendleton, SC, to assess the effect of After-Ripening and burial on light and temperature requirements for germination. Pitted morningglory germination was evaluated over a 12-mo period after maturation. Germination was neither stimulated by red light or inhibited by far-red light, nor was it reversible by red or far-red light. Light was not essential for germination of buried seed. Direct exposure to sunlight prevented germination of recently mature seed, but not once seed had sufficiently after-ripened. Pitted morningglory was capable of germination in darkness over a wide range of constant and fluctuating temperatures immediately after maturation. Germination in response to temperature varied with time of year after maturation, with the population from Pendleton having increased germination in May. Thermal fluctuations increased germination of both populations at suboptimal temperatures. Thermal amplitude regulation of germination varied over time and appeared to play a more important role in germination of after-ripened seed than recently mature ones. The ecological significance of changes in germination requirements with After-Ripening is discussed.


2004 ◽  
Vol 18 (1) ◽  
pp. 124-130 ◽  
Author(s):  
CLIFFORD H. KOGER ◽  
DANIEL H. POSTON ◽  
KRISHNA N. REDDY

Weed Science ◽  
1985 ◽  
Vol 33 (6) ◽  
pp. 786-794 ◽  
Author(s):  
Stephen O. Duke ◽  
William H. Kenyon ◽  
Rex N. Paul

The effect of FMC 57020 [2-(2-chlorophenyl) methyl-4,4-dimethyl-3-isoxalidinone] on chloroplast development was examined in the cotyledons of 5-day-old, etiolated pitted morningglory (Ipomoea lacunosaL. ♯ IPOLA) seedlings grown from seeds inbibed for 24 h in water or 0.5 mM FMC 57020. In etiolated tissues, protochlorophyllide content was unaffected by FMC 57020; however, the herbicide eliminated carotenoid accumulation. There was no effect of FMC 57020 on phytoene or phytofluene content, although norflurazon [4-chloro-5-(methylamino)-2-(3-trifluoromethyl) phenyl)-3(2H)-pyridazinone] increased phytoene content in these tissues. The Shibata shift was greatly retarded in FMC 57020-treated cotyledons, suggesting that phytol levels are also reduced by the herbicide. There were no ultrastructural effects on etioplasts; however, under low white light (150 μE·m-2·s-1PAR), plastids of FMC 57020-treated seedlings did not develop into chloroplasts but rapidly developed ultrastructural symptoms of photobleaching. Starch was not mobilized in herbicide-treated plastids and sugar levels were higher in these plastids than in control plastids. Etiolated hypocotyl growth was inhibited by FMC 57020, whereas norflurazon had no effect upon it. Our results suggest that FMC 57020 blocks both diterpene and tetraterpene synthesis.


Weed Science ◽  
1980 ◽  
Vol 28 (5) ◽  
pp. 568-572 ◽  
Author(s):  
G. A. Buchanan ◽  
J. E. Street ◽  
R. H. Crowley

Influence of time of planting and distance from the cotton row of pitted morningglory (Ipomoea lacunosaL.), prickly sida (Sida spinosaL.), and redroot pigweed (Amaranthus retroflexusL.) on yield of seed cotton (Gossypium hirsutumL. ‘Stoneville 213’) was determined on Decatur clay loam during 1975 through 1978. Weed growth was measured in 1977 and 1978. Seeds of the three weed species were planted 15, 30, or 45 cm from the cotton row at time of planting cotton or 4 weeks later. Weeds planted 4 weeks after planting cotton grew significantly less than did weeds planted at the same time as cotton. When planted with cotton, redroot pigweed produced over twice as much fresh weight as did prickly sida or pitted morningglory. The distance that weeds were planted from the cotton row did not affect weed growth in 1978, but did in 1977. The distance that weeds were planted from the cotton row did not affect their competitiveness in any year as measured by yield of cotton. However, in each year, yields of cotton were reduced to a greater extent by weeds planted with cotton than when planted 4 weeks later. In 3 of 4 yr, there were significant differences in competitiveness of each of the three weed species with cotton.


Weed Science ◽  
1988 ◽  
Vol 36 (5) ◽  
pp. 663-666 ◽  
Author(s):  
Dennis G. Riley ◽  
David R. Shaw

Field experiments were conducted to evaluate postemergence combinations of imazethapyr, imazquin, or chlorimuron with low rates of imazapyr for Johnsongrass and pitted morningglory control. Imazapyr applied alone at rates up to 4 g ai/ha gave little or no control of either weed species. However, the addition of imazapyr to various rates of imazethapyr or imazaquin synergistically increased both johnsongrass and pitted morningglory control 8 weeks after treatment. The rates of imazethapyr or imazaquin required for significant enhancement of johnsongrass control were higher than those required for pitted morningglory control. No synergistic increases in control of either weed species were noted with mixtures of imazapyr and chlorimuron. Although not synergistic in every case, the mixtures of imazapyr at 4 g/ha with imazethapyr, imazaquin, or chlorimuron gave johnsongrass and pitted morningglory control equal to or better than the next higher rate of these herbicides applied alone. Imazapyr did not increase soybean injury or decrease yield provided by chlorimuron, imazaquin, or imazethapyr.


Weed Science ◽  
1984 ◽  
Vol 32 (6) ◽  
pp. 813-818 ◽  
Author(s):  
Michele A. Barker ◽  
Lafayette Thompson ◽  
F. Michael Godley

Field studies were conducted in North Carolina in 1981 and 1982 to evaluate the efficacy of postemergence over-the-top and postemergence-directed herbicides for control of five morningglory species: entireleaf [Ipomoea hederacea(L.) Jacq. var.integriusculaGray], tall [Ipomoea purpurea(L.) Roth. ♯3PHBPU], ivyleaf [Ipomoea hederacea(L.) Jacq. var.hederacea♯IPOHE], pitted [Ipomoea lacunosa(L.) ♯ IPOLA], and scarlet [Ipomoea coccinea(L.) ♯IPOCC]. The glabrous morningglories (scarlet and pitted) were more easily controlled than the pubescent morningglories (ivyleaf, tall, and entireleaf). Lower soybean injury, higher morningglory control, and greater soybean seed yields were obtained with over-the-top herbicide applications at 4 weeks after planting (WAP) than at 6 WAP. Pitted morningglory was tolerant to low rates of 2,4-DB [4-(2,4-dichlorophenoxy) butyric acid]. This herbicide applied over the top at the R1 stage of soybean growth produced low yields, probably as a result of morningglory interference and herbicide injury to the soybeans. Postemergence-directed applications of linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea] and metribuzin [4-amino-6-tert-butyl-3-(methylthio-as-triazin-5(4H)-one] alone or in tank mixtures with 2,4-DB resulted in soybean injury that ranged from 12 to 36%. Highest soybean seed yields (equivalent to weed-free control) from postemergence-directed herbicides were obtained with applications of 2,4-DB, linuron, and a tank mixture of metribuzin and 2,4-DB.


Weed Science ◽  
2005 ◽  
Vol 53 (4) ◽  
pp. 446-450 ◽  
Author(s):  
Walter E. Thomas ◽  
Shawn C. Troxler ◽  
W. David Smith ◽  
Loren R. Fisher ◽  
John W. Wilcut

Studies were conducted to evaluate uptake, translocation, and metabolism of root-absorbed14C-sulfentrazone in peanut, prickly sida, and pitted morningglory. Peanut absorbed more than five and three times greater14C-sulfentrazone than pitted morningglory and prickly sida, respectively. All plant species translocated appreciable amounts (≥ 39%) of radioactivity to the leaves. The three plant species had some capacity to metabolize14C-sulfentrazone. At 3 h after treatment, 7, 29, and 71% of the radioactivity in the shoots of peanut, prickly sida, and pitted morningglory, respectively, was sulfentrazone. Sulfentrazone levels in the shoots at 3 and 6 h after treatment correspond to reported tolerance levels, with peanut being the most tolerant of the three species, whereas prickly sida and pitted morningglory are moderately tolerant and completely susceptible to sulfentrazone, respectively. Levels of metabolites varied among species, plant part, and harvest timing. On the basis of these data, tolerance in peanut is largely due to its ability to rapidly metabolize sulfentrazone.


Sign in / Sign up

Export Citation Format

Share Document