Morphologic Detection of Multiple Steroid Binding Sites in Breast Cancer by Histochemistry and By Immunocytochemistry with Monoclonal Antireceptor Antibody

Author(s):  
Louis P. Pertschuk ◽  
Karen B. Eisenberg ◽  
Anne C. Carter ◽  
Joseph G. Feldman
2008 ◽  
Vol 28 (24) ◽  
pp. 7487-7503 ◽  
Author(s):  
Poornima Bhat-Nakshatri ◽  
Guohua Wang ◽  
Hitesh Appaiah ◽  
Nikhil Luktuke ◽  
Jason S. Carroll ◽  
...  

ABSTRACT Estrogen regulates several biological processes through estrogen receptor α (ERα) and ERβ. ERα-estrogen signaling is additionally controlled by extracellular signal activated kinases such as AKT. In this study, we analyzed the effect of AKT on genome-wide ERα binding in MCF-7 breast cancer cells. Parental and AKT-overexpressing cells displayed 4,349 and 4,359 ERα binding sites, respectively, with ∼60% overlap. In both cell types, ∼40% of estrogen-regulated genes associate with ERα binding sites; a similar percentage of estrogen-regulated genes are differentially expressed in two cell types. Based on pathway analysis, these differentially estrogen-regulated genes are linked to transforming growth factor β (TGF-β), NF-κB, and E2F pathways. Consistent with this, the two cell types responded differently to TGF-β treatment: parental cells, but not AKT-overexpressing cells, required estrogen to overcome growth inhibition. Combining the ERα DNA-binding pattern with gene expression data from primary tumors revealed specific effects of AKT on ERα binding and estrogen-regulated expression of genes that define prognostic subgroups and tamoxifen sensitivity of ERα-positive breast cancer. These results suggest a unique role of AKT in modulating estrogen signaling in ERα-positive breast cancers and highlights how extracellular signal activated kinases can change the landscape of transcription factor binding to the genome.


1971 ◽  
Vol 246 (11) ◽  
pp. 3646-3652 ◽  
Author(s):  
Manik Ganguly ◽  
James C. Warren

2021 ◽  
Vol 76 (1) ◽  
pp. 103-110
Author(s):  
Alexandra A. Povaliaeva ◽  
Ekaterina A. Pigarova ◽  
Anastasia A. Romanova ◽  
Larisa K. Dzeranova ◽  
Artem Y. Zhukov ◽  
...  

Vitamin D-binding protein (DBP) was discovered more than half a century ago as a polymorphic serum protein and is currently characterized by a variety of physiological properties. First of all, DBP carries the bulk of vitamin D metabolites circulating in the bloodstream, while albumin is the second most important transport protein, especially in patients with a low concentration of DBP in serum. Since it was discovered that only 12% of the total circulating DBP have occupied steroid binding sites, a vigorous study of other potential biological roles of DBP was initiated: actin utilization, regulation of inflammation and innate immunity mechanisms, fatty acid binding, effects on bone metabolism and participation in the tumor pathogenesis. This review focuses on the main known biological functions of DBP.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yufei Lv ◽  
Xiaohong Lv ◽  
Huike Yang ◽  
Xiuying Qi ◽  
Xiangchen Wang ◽  
...  

BackgroundTriple-negative breast cancer (TNBC) is a significant cause of patient morbidity. The exactly pathobiological features of this condition has yet to be completely elucidated.MethodsBreast cancer data obtained from The Cancer Genome Atlas (TCGA) database were evaluated for lncRNA SNHG6 expression. Normal human breast epithelial cell line (MCF-10A) and other breast cancer cell lines (BT-549, MDA-MB-231, Hs 578t, ZR-75-30, SK-BR-3, MCF-7) were also assessed for lncRNA SNHG6 expressions. Cellular proliferative ability was evaluated with colony formation and CCK-8 assays. The ability of cells to migrate was scrutinized with the wound healing and Boyden chamber cell migration assays. qRT-PCR enabled for detection of lncRNA SNHG6, miR-125b-5p and BMPR1B mRNA expressions. Protein BMPR1B expressions were further assessed using Western Blotting. Direct binding sites between transcripts were determined using dual-luciferase reporter assays. We also constructed a xenograft mouse model to further dissect the vivo implications of lncRNA SNHG6. Ki-67 and c-Caspase-3 expressions were detected using immunohistochemistry staining.ResultsBreast cancer cell lines demonstrated higher lncRNA SNHG6 expressions, particularly TNBC cell lines, in contrast to normal breast epithelial cell lines. This finding coincided with those noted on analysis of TCGA breast cancer data. lncRNA SNHG6 knockdown inhibited TNBC cell proliferation, migration, while promoted cell apoptosis. Furthermore, suppressed lncRNA SNHG6 expressions resulted in lower tumor weights and volumes in a xenograft mouse model, as evidenced by Ki-67 and c-Caspase-3 expression profiles in tumor tissues. miR-125b-5p and lncRNA SNHG6/BMPR1B both possessed direct binding sites for each other which was validated utilizing a dual-luciferase reporter assay. Decreasing lncRNA SNHG6 expression in TNBC cells upregulated miR-125b-5p expression. Another side, inhibiting miR-125b-5p upregulated BMPR1B expression in these cells. Moreover, knocking down lncRNA SNHG6 downregulated BMPR1B expression in TNBC cells, and the finding was rescued in cells which were exposed to miR-125b-5p inhibitor. Downregulating miR-125b-5p mitigated the effect of suppressing lncRNA SNHG6 on TNBC cell proliferation, migration, and apoptosis.ConclusionDownregulation of lncRNA SNHG6 could inhibit TNBC cell proliferative, migratory capabilities and promote apoptosis capability, likely through modulation of the miR-125b-5p/BMPR1B axis. This axis may be targeted in formulating new therapies for TNBC.


Sign in / Sign up

Export Citation Format

Share Document