Using HF Radar (OSCR) Surface Current Measurements to Develop Numerical Models

2018 ◽  
pp. 213-232
Author(s):  
D. Prandle
2019 ◽  
Vol 36 (2) ◽  
pp. 231-247 ◽  
Author(s):  
Brian Emery ◽  
Libe Washburn

Abstract HF radars typically produce maps of surface current velocities without estimates of the measurement uncertainties. Many users of HF radar data, including spill response and search and rescue operations, incorporate these observations into models and would thus benefit from quantified uncertainties. Using both simulations and coincident observations from the baseline between two operational SeaSonde HF radars, we demonstrate the utility of expressions for estimating the uncertainty in the direction obtained with the Multiple Signal Classification (MUSIC) algorithm. Simulations of radar backscatter using surface currents from the Regional Ocean Modeling System show a close correspondence between direction of arrival (DOA) errors and estimated uncertainties, with mean values of 15° at 10 dB, falling to less than 3° at 30 dB. Observations from two operational SeaSondes have average DOA uncertainties of 2.7° and 3.8°, with a fraction of the observations (10.5% and 7.1%, respectively) having uncertainties of >10°. Using DOA uncertainties for data quality control improves time series comparison statistics between the two radars, with r2=0.6 increasing to r2=0.75 and RMS difference decreasing from 15 to 12 cm s−1. The analysis illustrates the major sources of error in oceanographic HF radars and suggests that the DOA uncertainties are suitable for assimilation into numerical models.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Adam Gauci ◽  
Aldo Drago ◽  
John Abela

High frequency (HF) radar installations are becoming essential components of operational real-time marine monitoring systems. The underlying technology is being further enhanced to fully exploit the potential of mapping sea surface currents and wave fields over wide areas with high spatial and temporal resolution, even in adverse meteo-marine conditions. Data applications are opening to many different sectors, reaching out beyond research and monitoring, targeting downstream services in support to key national and regional stakeholders. In the CALYPSO project, the HF radar system composed of CODAR SeaSonde stations installed in the Malta Channel is specifically serving to assist in the response against marine oil spills and to support search and rescue at sea. One key drawback concerns the sporadic inconsistency in the spatial coverage of radar data which is dictated by the sea state as well as by interference from unknown sources that may be competing with transmissions in the same frequency band. This work investigates the use of Machine Learning techniques to fill in missing data in a high resolution grid. Past radar data and wind vectors obtained from satellites are used to predict missing information and provide a more consistent dataset.


2020 ◽  
Author(s):  
Xavier Couvelard ◽  
Christophe Messager ◽  
Pierrick Penven ◽  
Phillipe Lattes

Abstract The oceanic circulation south of Africa is characterized by a complex dynamics with a strong variability due to the presence of the Agulhas current and numerous eddies. The area of interest of this paper, is also the location of several natural gas fields under seafloor which are targeted for drilling and exploitation.The complex and powerful ocean currents induce significant issues for ship operations at the surface as well as under the surface for deep sea operations. Therefore, the knowledge of the state of the currents and the ability to forecast them in a realistic manner could greatly enforce the safety of various marine operation. Following this objective an array of HF radar systems was deployed to allow a detailed knowledge of the Agulhas currents and its associated eddy activity. It is shown in this study that 4DVAR assimilation of HF radar allow to represent the surface circulation more realistically. Two kind of experiments have been performed, a one-month analysis and two days forecast. The one-month 4DVAR experiment have been compared to geostrophic currents issued from altimeters and highlight an important improvement of the geostrophic currents. Furthermore, despite the restricted size of the area covered with HF radar, we show that the solution is improved almost in the whole domain, mainly upstream and downstream of the HF radar's covered area. We also show that while benefits of the assimilation on the surface current intensity is significantly reduced in the first 6 hours of the forecast, the correction in direction persists after 48 hours.


Ocean Science ◽  
2015 ◽  
Vol 11 (6) ◽  
pp. 921-935 ◽  
Author(s):  
P. Lorente ◽  
S. Piedracoba ◽  
J. Soto-Navarro ◽  
E. Alvarez-Fanjul

Abstract. The Ebro River delta is a relevant marine protected area in the western Mediterranean. In order to promote the conservation of its ecosystem and support operational decision making in this sensitive area, a three-site standard-range (13.5 MHz) CODAR SeaSonde high-frequency (HF) radar was deployed in December 2013. The main goal of this work is to explore basic features of the sea surface circulation in the Ebro deltaic region as derived from reliable HF radar surface current measurements. For this aim, a combined quality control methodology was applied: firstly, 1-year long (2014) real-time web monitoring of nonvelocity-based diagnostic parameters was conducted to infer both radar site status and HF radar system performance. The signal-to-noise ratio at the monopole exhibited a consistent monthly evolution, although some abrupt decreases (below 10 dB), occasionally detected in June for one of the radar sites, impacted negatively on the spatiotemporal coverage of total current vectors. It seemed to be sporadic episodes since radar site overall performance was found to be robust during 2014. Secondly, a validation of HF radar data with independent in situ observations from a moored current meter was attempted for May–October 2014. The accuracy assessment of radial and total vectors revealed a consistently high agreement. The directional accuracy of the HF radar was rated at better than 8°. The correlation coefficient and root mean square error (RMSE) values emerged in the ranges [0.58–0.83] and [4.02–18.31] cm s−1, respectively. The analysis of the monthly averaged current maps for 2014 showed that the HF radar properly represented basic oceanographic features previously reported, namely, the predominant southwestward flow, the coastal clockwise eddy confined south of the Ebro delta mouth, or the Ebro River impulsive-type freshwater discharge. The EOF analysis related the flow response to local wind forcing and confirmed that the surface current field evolved in space and time according to three significantly dominant modes of variability.


2015 ◽  
Vol 32 (2) ◽  
pp. 256-281 ◽  
Author(s):  
E. V. Stanev ◽  
F. Ziemer ◽  
J. Schulz-Stellenfleth ◽  
J. Seemann ◽  
J. Staneva ◽  
...  

AbstractAn observation network operating three Wellen Radars (WERAs) in the German Bight, which are part of the Coastal Observing System for Northern and Arctic Seas (COSYNA), is presented in detail. Major consideration is given to expanding the patchy observations over the entire German Bight on a 1-km grid and producing state estimates at intratidal scales, and 6- and 12-h forecasts. This was achieved with the help of the proposed spatiotemporal optimal interpolation (STOI) method, which efficiently uses observations and simulations from a free model run within an analysis window of one or two tidal cycles. In this way the method maximizes the use of available observations and can be considered as a step toward the “best surface current estimate.” The performance of the analysis was investigated based on the achieved reduction of the misfit between model and observations. The complex dynamics of the study domain was illustrated based on the spatial and temporal changes of tidal ellipses for the M2 and M4 constituents from HF radar observations. It was demonstrated that blending observations and numerical modeling facilitates physical interpretation of processes such as the nonlinear distortion of the Kelvin wave in the coastal zone and in particular in front of the Elbe and Weser estuaries. Comparisons with in situ data acquired outside the area covered by the HF radar demonstrated that the analysis method is able to propagate the HF radar information to larger spatial scales.


2021 ◽  
Author(s):  
Shouvik Dey ◽  
Sourav Sil ◽  
Samiran Mandal

<p>Coastal Upwelling is a phenomenon in which cold and nutrient-enriched water from the Ekman layers reaches the surface enhancing the biological productivity of the upwelling region. In this work, an attempt is made to understand the influence of coastal upwelling on surface current variations during May 2018 to August 2018, when HF radar current observation (source: NIOT, India) is available. The wind-based Upwelling Index(UI<sub>wind</sub>) showed coastal upwelling throughout the study period. But the SST based upwelling index (UI<sub>sst</sub>) showed upwelling occurred only from May to the first week of June. Cross-shore components of HF radar-derived ocean surface current (CSSC)  showed strong similarity with UI<sub>sst</sub>. The first phase of upwelling from UI<sub>sst</sub> is observed to start on 5<sup>th</sup> May and lasts till 14<sup>th</sup> May with a maximum peak on around 10<sup>th</sup> May and having a horizontal extension of ~40 km. Then, there is a break period for about three days and after that, the second phase of upwelling starts on 17<sup>th</sup> May and lasts till 25<sup>th</sup> May with a maximum peak on around 20<sup>th</sup> May, but this time the horizontal extension is ~100 km which is much larger than during the first phase. A strong positive (from coast to offshore) CSSC is observed to start on around 5<sup>th</sup> May and lasts till 13<sup>th</sup> May with a maximum peak on around 10<sup>th</sup> May and having a horizontal extension of ~40 km, as observed from UIsst. A reversal of CSSC (towards coast) is noted on 14<sup>th</sup> May when the break of coastal upwelling is evident from UI<sub>sst</sub>. The CSSC then again started intensifying 15<sup>th</sup> May onwards and continued for ten days till 25<sup>th</sup> May, similar to UI<sub>sst</sub>.  The horizontal extension of the upwelling signature in the second phase of upwelling is ~70 km. Therefore, a 7-10 days of the coastal upwelling and its horizontal extension are identified in this study. This study suggests the use of high resolution (~6 km) HF radar current observation on the monitoring of coastal upwelling processes.</p>


2020 ◽  
Vol 12 (17) ◽  
pp. 2841
Author(s):  
Lei Ren ◽  
Nanyang Chu ◽  
Zhan Hu ◽  
Michael Hartnett

Numerical models and remote sensing observation systems such as radars are useful for providing information on surface flows for coastal areas. Evaluation of their performance and extracting synoptic characteristics are challenging and important tasks. This research aims to investigate synoptic characteristics of surface flow fields through undertaking a detailed analysis of model results and high frequency radar (HFR) data using self-organizing map (SOM) and empirical orthogonal function (EOF) analysis. A dataset of surface flow fields over thirteen days from these two sources was used. A SOM topology map of size 4 × 3 was developed to explore spatial patterns of surface flows. Additionally, comparisons of surface flow patterns between SOM and EOF analysis were carried out. Results illustrate that both SOM and EOF analysis methods are valuable tools for extracting characteristic surface current patterns. Comparisons indicated that the SOM technique displays synoptic characteristics of surface flow fields in a more detailed way than EOF analysis. Extracted synoptic surface current patterns are useful in a variety of applications, such as oil spill treatment and search and rescue. This research provides an approach to using powerful tools to diagnose ocean processes from different aspects. Moreover, it is of great significance to assess SOM as a potential forecasting tool for coastal surface currents.


Author(s):  
Shen Wei ◽  
Wen Biyang ◽  
Wu Shicai ◽  
Bai Liyun ◽  
Zhou Hao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document