Adjustment of a tridimensional network structure of ecological revetment to the local flow pattern

2017 ◽  
pp. 51-56
Author(s):  
Ma Ai-xing ◽  
Cao Min-xiong ◽  
Xiao Qing-hua ◽  
Hu Ying ◽  
Fu Zhong-min
Author(s):  
Peter Toma

Offspring of the nuclear reactor industry and gas-oil production, multiphase fluids handling technology appears to have matured into an entirely new field of inquiry, most notably following broad acceptance of the drift flux and flow pattern concepts and their widespread integration into engineering calculations. The drift flux model (DFM), first suggested by Nicklin in 1962 and, soon after, adapted and developed by Professor Zuber’s research group at General Electric, enables calculation of “locally averaged” phase velocity. Further progress made in selection of the flow patterns, calculated for each section of the pipe, provided the key to properly assessing the terminal velocity of the discrete phase and the local phase distributions. The flow pattern concept was first introduced by Canadian Charles Govier to describe oil-water laboratory experiments, then by Hewitt-Roberts and Baker in 1954. A decade later, the team of Dukler-Taitel-Barnea developed the qualitative flow pattern concept into a quantitative roadmap procedure leading to rational calculations of the local (cross-section averaged) gas-liquid flow geometry, or flow pattern. The homogeneous gas-liquid flow, presuming the equality of gas and liquid velocities, a simplification broadly accepted during the early days of two-phase flow engineering, came to be regarded, due to Hinze’s work (Shell, 1955), as an identifiable region in the local flow map, reflecting turbulent and high-shear breakup of the discrete phase. To illustrate the usefulness, validity, and importance of the DFM, and mechanistic modeling using the DFM, as well as the salient work of Prof. Zuber on boiling instability this paper discuses reduction of potential explosive droplet boiling risk during multiphase pumping of high–gas-oil ratio mixtures. To assess critical operating conditions of the multiphase pumps, the Ishi-Zuber criteria developed during 1970 for assessing potential boiling instabilities were adapted to multiphase pumping/compression equipment and the results compared to field instability data. The elucidation of this problem relies heavily on the DFM and on salient research performed during 70s by Prof. Zuber’s team.


Author(s):  
Yoshitaka Mizutani ◽  
Shigeo Hosokawa ◽  
Akio Tomiyama

Air-water two-phase flow patterns in a four by four square lattice rod bundle consisting of an acrylic channel box of 68 mm in width and transparent rods of 12 mm in diameter were observed by utilizing a high speed video camera, FEP (fluorinated ethylene propylene) tubes for rods, and a fiberscope inserted in a rod. The FEP possesses the same refractive index as water, and thereby, whole flow patterns in the bundle and local flow patterns in subchannels were successfully visualized with little optical distortion. The ranges of liquid and gas volume fluxes, <JG> and <JL>, in the present experiments were 0.1 < <JL> < 2.0 m/s and 0.04 < <JG> < 8.85 m/s, which covered typical two-phase flow patterns appearing in a fuel bundle of a boiling water nuclear reactor. As a result, the following conclusions were obtained: (1) the region of slug flow in the <JG> – <JL> flow pattern diagram is so narrow that it can be regarded as a boundary between bubbly and churn flows, (2) the boundary between bubbly and churn flows is close to the boundary between bubbly and slug flows of the Mishima & Ishii’s flow pattern transition model, and (3) the boundary between churn and annular flows is well predicted by the Mishima & Ishii’s model.


Author(s):  
Essam E. Khalil

The recent advances in numerical methods and the vast development of computers have directed the designers to better development and modifications to air-flow pattern and heat transfer in combustion chambers. Extensive efforts are exerted to adequately predict the air velocity and turbulence intensity distributions in the combustor zones, and to reduce the air pollution and noise abatement to ultimately produce quite and energy efficient combustor systems. The present work utilizes mathematical modeling techniques to primarily predict what happens in three-dimensional combustion chambers simulating boiler furnaces, and areo engines in terms of flow regimes and interactions. The present work also demonstrates the effect of chamber design and operational parameters on performance, wall shear stresses, and vorticity under various operating parameters. The governing equations of mass, momentum and energy are commonly expressed in a preset form with source terms to represent pressure radients, turbulence and viscous action. The physical and chemical characteristics of the air and fuel are obtained from tabulated data in the literature. The flow regimes and heat transfer plays an important role in the efficiency and utilization of energy. The behavior was found to be strongly dependent on turbulent shear, mixing, blockage, wall conditions and location of fuel and air inlets. Eddies can be strong enough to have higher velocities typically near reactants supply openings. Excessive transverse flow velocities cause extra macromixing; the air flow regimes are complex and of three-dimensional nature; with the advance of computational techniques it is possible to accurately simulate three-dimensional flows. The results reported in this work were obtained with the aid of the three-dimensional program 3DCOMB; applied to axisymmetrical and three-dimensional complex geometry with and without swirl. The present numerical grid comprises, typically, 144000-grid node covering the combustion chamber volume in the X, R or Y and Z coordinates directions. The numerical residual in the governing equations typically less than 0.001%. A modified grid generation formula was proposed and incorporated in the present work. Examples of large industrial furnaces are shown and were in good agreement with available measurements in the open literature. One may conclude that flow patterns, turbulence and heat transfer in combustors are strongly affected by the inlet swirl, inlet momentum ratios, combustor geometry; both micro and macro mixing levels are influential. Greater tangential velocities and turbulence characteristics are demonstrated in situations with higher swirl intensities. The present modeling capabilities can adequately predict the local flow pattern and turbulence kinetic energy levels in complex combustors.


2018 ◽  
Vol 848 ◽  
pp. 1013-1039 ◽  
Author(s):  
Ming Zhao ◽  
Lin Lu

Flow past two circular cylinders in cruciform arrangement is simulated by direct numerical simulations for Reynolds numbers ranging from 100 to 500. The study is aimed at investigating the local flow pattern near the gap between the two cylinders, the global vortex shedding flow in the wake of the cylinders and their effects on the force coefficients of the two cylinders. The three identified local flow patterns near the gap: trail vortex (TV), necklace vortex (NV) and vortex shedding in the gap (SG) agree with those found by flow visualization in experimental studies. As for the global wake flow, two modes of vortex shedding are identified: K mode with inclined wake vortices and P mode where the wake vortices are parallel to the cylinders. The K mode occurs when the gap is slightly greater than the boundary gap between the NV and SG. It also coexists with the SG gap flow pattern if the Reynolds number is very small ($Re=100$). The flow pattern affects the force coefficient. The K mode increases the mean drag coefficient and the standard deviation of the lift coefficient at the centre of the upstream cylinder because the wake vortices converge towards the centre. The mean drag coefficient and standard deviation of the lift coefficient of the downstream cylinder decreases because of the shedding effect from the upstream cylinder.


Compressible flows in the wakes of a two-dimensional square cylinder (side length D = 20 mm) and thick symmetrical airfoil (NACA 0018, chord length 20 mm) arranged in tandem have been examined experi­mentally, at free-stream Mach numbers between 0.15 and 0.91, at free-stream Reynolds numbers (based on the side length) between 7.0 x 10 4 and 4.2 x 10 5 , and with spacing (or central distance) L between the cylinder and airfoil ranging from 22.5 to 110 mm. When the Mach number is smaller than about 0.63, the flow can be divided into three patterns depending upon the spacing. In the first flow pattern, with small spacing, the airfoil is enclosed completely within the vortex formation region of the square cylinder. In the second flow pattern, the separating shear layers from the square cylinder reattach to the airfoil. In the third flow pattern, with large spacing, the separating shear layers roll up upstream of the airfoil. The Strouhal number becomes a minimum at the critical spacing of about 3.3 D and then experiences a sudden jump, practically at the value found for the single square cylinder, which corresponds to the transition from the second flow pattern to the third flow pattern. Once the Mach number becomes larger than about 0.63, the critical spacing disappears. However, although no local flow regions are supersonic, acoustic waves propagating upstream have been observed most clearly when the vortex shed from the square cylinder is incident on the leading edge of the airfoil. Whereas once the local flow regions become supersonic, i. e. the Mach number is larger than about 0.7, the downstream airfoil provides a streamlining effect on the flow behind the square cylinder, and thus lets the alternating vortices form downstream of the trailing edge of the airfoil. The alternating vortices are shed through the gap between the two shock waves formed on the upper and lower separating shear layers. The pressure amplitude in the test section decreases suddenly and various frequency components other than the vortex shedding frequency appear.


Author(s):  
F. Louchet ◽  
L.P. Kubin

Investigation of frictional forces -Experimental techniques and working conditions in the high voltage electron microscope have already been described (1). Care has been taken in order to minimize both surface and radiation effects under deformation conditions.Dislocation densities and velocities are measured on the records of the deformation. It can be noticed that mobile dislocation densities can be far below the total dislocation density in the operative system. The local strain-rate can be deduced from these measurements. The local flow stresses are deduced from the curvature radii of the dislocations when the local strain-rate reaches the values of ∿ 10-4 s-1.For a straight screw segment of length L moving by double-kink nucleation between two pinning points, the velocity is :where ΔG(τ) is the activation energy and lc the critical length for double-kink nucleation. The term L/lc takes into account the number of simultaneous attempts for double-kink nucleation on the dislocation line.


Author(s):  
Y. Pan

The D defect, which causes the degradation of gate oxide integrities (GOI), can be revealed by Secco etching as flow pattern defect (FPD) in both float zone (FZ) and Czochralski (Cz) silicon crystal or as crystal originated particles (COP) by a multiple-step SC-1 cleaning process. By decreasing the crystal growth rate or high temperature annealing, the FPD density can be reduced, while the D defectsize increased. During the etching, the FPD surface density and etch pit size (FPD #1) increased withthe etch depth, while the wedge shaped contours do not change their positions and curvatures (FIG.l).In this paper, with atomic force microscopy (AFM), a simple model for FPD morphology by non-crystallographic preferential etching, such as Secco etching, was established.One sample wafer (FPD #2) was Secco etched with surface removed by 4 μm (FIG.2). The cross section view shows the FPD has a circular saucer pit and the wedge contours are actually the side surfaces of a terrace structure with very small slopes. Note that the scale in z direction is purposely enhanced in the AFM images. The pit dimensions are listed in TABLE 1.


Sign in / Sign up

Export Citation Format

Share Document