Role of Milk Carbohydrates in Preventing Bacterial Adhesion

2005 ◽  
pp. 141-176 ◽  
Author(s):  
María-Jesús Martín ◽  
Pablo Hueso ◽  
Samuel Martín-Sosa
Keyword(s):  
Author(s):  
Stefan B. Svenson ◽  
Gunilla K�llenius ◽  
Timo K. Korhonen ◽  
Roland M�llby ◽  
James A. Roberts ◽  
...  
Keyword(s):  

2019 ◽  
Vol 10 (4) ◽  
pp. 56 ◽  
Author(s):  
Hamid Mortazavian ◽  
Guillaume A. Picquet ◽  
Jānis Lejnieks ◽  
Lynette A. Zaidel ◽  
Carl P. Myers ◽  
...  

In this study, we have prepared a series of 4- and 6-arm star-shaped polymers with varying molecular weight and hydrophobicity in order to provide insight into the role and relationship that shape and composition have on the binding and protecting of oral relevant surfaces (hydroxyapatite, HAP) from bacteria colonization. Star-shaped acrylic acid polymers were prepared by free-radical polymerization in the presence of chain transfer agents with thiol groups, and their binding to the HAP surfaces and subsequent bacteria repulsion was measured. We observed that binding was dependent on both polymer shape and hydrophobicity (star vs. linear), but their relative efficacy to reduce oral bacteria attachment from surfaces was dependent on their hydrophobicity only. We further measured the macroscopic effects of these materials to modify the mucin-coated HAP surfaces through contact angle experiments; the degree of angle change was dependent on the relative hydrophobicity of the materials suggesting future in vivo efficacy. The results from this study highlight that star-shaped polymers represent a new material platform for the development of dental applications to control bacterial adhesion which can lead to tooth decay, with various compositional and structural aspects of materials being vital to effectively design oral care products.


2009 ◽  
Vol 22 (1) ◽  
pp. 73-85 ◽  
Author(s):  
Amit Das ◽  
Nandini Rangaraj ◽  
Ramesh V. Sonti

Xanthomonas oryzae pv. oryzae is the causal agent of bacterial blight of rice. We have used enhanced green fluorescent protein-tagged X. oryzae pv. oryzae cells in conjunction with confocal microscopy to monitor the role of several adhesin-like functions in bacterial adhesion to leaf surface and early stages of leaf entry. Mutations in genes encoding either the Xanthomonas adhesin-like protein A (XadA) or its paralog, Xanthomonas adhesin-like protein B (XadB), as well as the X. oryzae pv. oryzae homolog of Yersinia autotransporter-like protein H (YapH), exhibit deficiencies in leaf attachment or entry. A mutation in the X. oryzae pv. oryzae pilQ gene, which is predicted to encode the type IV pilus secretin, appears to have no effect on leaf attachment or entry. The xadA– mutant is deficient in the ability to cause disease following surface inoculation while the XadB, YapH, and PilQ functions are less important than XadA for this process. The xadA– and xadB– mutants have no effect on virulence following wound inoculation whereas the yapH– and pilQ– mutants are always virulence deficient following wound inoculation. Overall, these results indicate that multiple adhesin-like functions are involved in promoting virulence of X. oryzae pv. oryzae, with preferential involvement of individual functions at different stages of the disease process.


2003 ◽  
Vol 69 (8) ◽  
pp. 4474-4481 ◽  
Author(s):  
Andrea Hanna ◽  
Michael Berg ◽  
Valerie Stout ◽  
Anneta Razatos

ABSTRACT Urinary tract infections are the most common urologic disease in the United States and one of the most common bacterial infections of any organ system. Biofilms persist in the urinary tract and on catheter surfaces because biofilm microorganisms are resistant to host defense mechanisms and antibiotic therapy. The first step in the establishment of biofilm infections is bacterial adhesion; preventing bacterial adhesion represents a promising method of controlling biofilms. Evidence suggests that capsular polysaccharides play a role in adhesion and pathogenicity. This study focuses on the role of physiochemical and specific binding interactions during adhesion of colanic acid exopolysaccharide mutant strains. Bacterial adhesion was evaluated for isogenic uropathogenic Escherichia coli strains that differed in colanic acid expression. The atomic force microscope (AFM) was used to directly measure the reversible physiochemical and specific binding interactions between bacterial strains and various substrates as bacteria initially approach the interface. AFM results indicate that electrostatic interactions were not solely responsible for the repulsive forces between the colanic acid mutant strains and hydrophilic substrates. Moreover, hydrophobic interactions were not found to play a significant role in adhesion of the colanic acid mutant strains. Adhesion was also evaluated by parallel-plate flow cell studies in comparison to AFM force measurements to demonstrate that prolonged incubation times alter bacterial adhesion. Results from this study demonstrate that the capsular polysaccharide colanic acid does not enhance bacterial adhesion but rather blocks the establishment of specific binding as well as time-dependent interactions between uropathogenic E. coli and inert substrates.


Parasitology ◽  
1991 ◽  
Vol 103 (3) ◽  
pp. 421-427 ◽  
Author(s):  
M. A. McClure ◽  
Y. Spiegel

Clavibacter sp. (syn. Corynebacterium rathayi) adhered to both Anguina funesta (syn. Anguina agrostis) and Anguina tritici, but differences in the nature of adhesion were noted. Similar patterns of binding of the bacteria and of anti-wheat germ agglutinin antibody initially led us to believe that the mechanism of bacterial adhesion was related to the presence of wheat-germ agglutinin (WGA) on the outer cuticle of both species of nematodes and its complementary carbohydrate on the bacterial capsule. However, treatment of either species of nematode with sodium metaperiodate inhibited bacterial adhesion but not the binding of anti-WGA antibody. Bacterial adhesion, therefore, is not mediated by WGA on the nematodes' surface. Moreover, differences in patterns of bacterial adhesion to Anguina species, both before and after treatments with NaCl and detergents, suggest basic interspecific differences in the nature of adhesion. Electron microscopy confirmed the contribution of the nematodes' cuticular surface coat (SC) to the process of adhesion, but it is still not clear how the SC interacts with the bacterial capsule or which of its components are involved. While complete removal of the SC with periodate prevented bacterial adhesion, juveniles that naturally resisted bacterial adhesion did not lack a SC. One explanation could be that the SC of individuals, to which bacteria do not adhere naturally, lacks crucial components that cannot be defined by conventional EM.


2005 ◽  
Vol 68 (12) ◽  
pp. 2672-2678 ◽  
Author(s):  
M. CARMEN COLLADO ◽  
MIGUEL GUEIMONDE ◽  
MANUEL HERNÁNDEZ ◽  
YOLANDA SANZ ◽  
SEPPO SALMINEN

The ability of potential probiotic strains to adhere to the intestinal mucosa and exclude and displace pathogens is of utmost importance for therapeutic manipulation of the enteric microbiota. The ability of seven selected human bifidobacterial strains and five human enteropathogenic strains to adhere to human intestinal mucus was analyzed and compared with that of four strains isolated from chicken intestines. The adhesion of the bifidobacterial strains ranged from 3 to 16% depending on the strain. Bifidobacterium strains of animal origin adhered significantly better than did strains of human origin. Of the pathogenic bacteria, Escherichia coli NCTC 8603 had the highest adhesion value (20%), Salmonella Typhimurium ATCC 29631, Enterobacter sakazakii ATCC 29544, and Clostridium difficile ATCC 9689 had adhesion values ranging from 10 to 15%, and Listeria monocytogenes ATCC 15313 had the lowest adhesive value (3%). The ability of these bifidobacteria to inhibit pathogen adhesion and to displace pathogens previously adhering to mucus was also tested. The inhibition of pathogens adhesion by these bifidobacterial strains was variable and clearly strain dependent. In general, bifidobacterial strains of animal origin were better able to inhibit and displace pathogens than were human strains. Preliminary characterization of bacterial adhesion was accomplished using different pretreatments to explore adhesion mechanisms. The results indicate that different molecules are implicated in the adhesion of bifidobacteria to the human intestinal mucus, constituting a multifactorial process.


Sign in / Sign up

Export Citation Format

Share Document