The environment of the Galaxy’s central black hole

Author(s):  
Mark Morris
2001 ◽  
Vol 122 (1) ◽  
pp. 232-241 ◽  
Author(s):  
Dalia Chakrabarty ◽  
Prasenjit Saha

1998 ◽  
Vol 184 ◽  
pp. 433-434
Author(s):  
A. M. Ghez ◽  
B. L. Klein ◽  
C. McCabe ◽  
M. Morris ◽  
E. E. Becklin

Although the notion that the Milky Way galaxy contains a supermassive central black hole has been around for more than two decades, it has been difficult to prove that one exists. The challenge is to assess the distribution of matter in the few central parsecs of the Galaxy. Assuming that gravity is the dominant force, the motion of the stars and gas in the vicinity of the putative black hole offers a robust method for accomplishing this task, by revealing the mass interior to the radius of the objects studied. Thus objects located closest to the Galactic Center provide the strongest constraints on the black hole hypothesis.


2014 ◽  
Vol 10 (S313) ◽  
pp. 289-293
Author(s):  
E. K. Mahony ◽  
J. B. R. Oonk ◽  
R. Morganti ◽  
T. A. Oosterloo ◽  
B. H. C. Emonts ◽  
...  

AbstractThe tight correlations observed between galaxies and their SMBH provides compelling evidence that the evolution of the galaxy and its central black hole are strongly linked. This is generally attributed to feedback mechanisms which, according to simulations, often take the form of outflows of gas, quenching star formation in the host galaxy and halting accretion onto the central black hole. While there are a number of plausible ways that outflows could be produced, recent results have shown that in some cases radio jets could be responsible for driving fast outflows of gas. One such example is seen in the nearby radio galaxy 3C293. In this talk I will present results from JVLA radio observations where we detect fast outflows (~1200 km/s) of neutral gas which are being driven by the radio-jet approximately 0.5 kpc from the central core, providing direct evidence for jet-ISM interaction. This is accompanied with recent IFU observations showing that ionised gas outflows are also being driven by the radio jet. Pinpointing the location of these outflows enables us to derive crucial parameters, such as the mass outflow rates and kinetic energy involved, which we can compare to predictions from galaxy evolution simulations.


1998 ◽  
Vol 184 ◽  
pp. 451-458 ◽  
Author(s):  
Douglas Richstone

The study of supermassive galactic black holes (BH) has moved beyond discovery to maturity. The are now ∼ 15 reliable detections. The mass of a central black hole apparently correlates with the mass of the hot component of its galactic host. It may be that every normal galaxy has a supermassive black hole carrying about 10−3 of its bulge mass, with important consequences for the structure and evolution of the core of the galaxy. The most recent major review is by Kormendy & Richstone (1995, KR).


2015 ◽  
Vol 24 (1) ◽  
pp. 1-8 ◽  
Author(s):  
G. Dryomova ◽  
V. Dryomov ◽  
A. Tutukov

AbstractWe present the results of numerical simulation on the probability of formation of a Hypervelocity Star (HVS) in the scenario of dynamic capture of a close binary system by the central black hole in the Galaxy and on the probability of its survival in the strong tidal field in the vicinity of the black hole. The results have been obtained for a series of pericentric distances. We applied a two-level numerical simulation implemented at first in the framework of the three-body problem used for evaluation of the HVS ejection velocity and then as an


1985 ◽  
Vol 113 ◽  
pp. 73-76
Author(s):  
S. Djorgovski ◽  
H. Penner

We report the preliminary results of a surface photometry survey of globular cluster cores. Two new cores with post-collapse morphology have been found, and two possible candidates. The estimated fraction of clusters with this core morphology in the Galaxy is only a few percent. Most clusters do not show a morphology similar to the predictions of the central black hole models.


2020 ◽  
Vol 501 (2) ◽  
pp. 2418-2423
Author(s):  
Oscar Salcido ◽  
Carlos Calcaneo-Roldan

ABSTRACT We present a simulation of the orbits of Galactic Centre stars, also known as ‘S-stars’, with the purpose of describing the motion of those bodies for which complete orbits are known with greater accuracy. The aim is to have a better understanding of the inner parts of the Galactic potential. The simulation assumes that the spacetime around the central black hole of the Galaxy may be modelled by the Schwarzschild metric, while stellar interactions are approximated classically. We model the central object as a black hole with mass 4.31 × 106 M⊙, fix the Galactic Centre distance at R = 8.33 kpc and include 37 orbiting stars, all of which have masses of 10 M⊙, except for S2, which has a mass of 20 M⊙. Our method allows us to predict the semimajor axis, a; eccentricity, ϵ; and period, T for these stars and predict their periastron shift, δΘ. In particular for S2, the most scrutinized star, we find δΘ = 11.9342 arcmin, in strong agreement with the observed value.


1999 ◽  
Vol 522 (2) ◽  
pp. 772-792 ◽  
Author(s):  
John Kormendy ◽  
Ralf Bender

Author(s):  
Hajime Inoue

Abstract We investigate a mechanism for a super-massive black hole at the center of a galaxy to wander in the nucleus region. A situation is supposed in which the central black hole tends to move by the gravitational attractions from the nearby molecular clouds in a nuclear bulge but is braked via the dynamical frictions from the ambient stars there. We estimate the approximate kinetic energy of the black hole in an equilibrium between the energy gain rate through the gravitational attractions and the energy loss rate through the dynamical frictions in a nuclear bulge composed of a nuclear stellar disk and a nuclear stellar cluster as observed from our Galaxy. The wandering distance of the black hole in the gravitational potential of the nuclear bulge is evaluated to get as large as several 10 pc, when the black hole mass is relatively small. The distance, however, shrinks as the black hole mass increases, and the equilibrium solution between the energy gain and loss disappears when the black hole mass exceeds an upper limit. As a result, we can expect the following scenario for the evolution of the black hole mass: When the black hole mass is smaller than the upper limit, mass accretion of the interstellar matter in the circumnuclear region, causing the AGN activities, makes the black hole mass larger. However, when the mass gets to the upper limit, the black hole loses the balancing force against the dynamical friction and starts spiraling downward to the gravity center. From simple parameter scaling, the upper mass limit of the black hole is found to be proportional to the bulge mass, and this could explain the observed correlation of the black hole mass with the bulge mass.


2020 ◽  
Vol 15 (S359) ◽  
pp. 280-282
Author(s):  
Gustavo Amaral Lanfranchi ◽  
Anderson Caproni ◽  
Jennifer F. Soares ◽  
Larissa S. de Oliveira

AbstractThe gas evolution of a typical Dwarf Spheroidal Galaxy is investigated by means of 3D hydrodynamic simulations, taking into account the feedback of type II and Ia supernovae, the outflow of an Intermediate Massive Black Hole (IMBH) and a static cored dark matter potential. When the IMBH’s outflow is simulated in an homogeneous medium a jet structure is created and a small fraction of the gas is pushed away from the galaxy. No jet structure can be seen, however, when the medium is disturbed by supernovae, but gas is still pushed away. In this case, the main driver of the gas removal are the supernovae. The interplay between the stellar feedback and the IMBH’s outflow should be taken into account.


Sign in / Sign up

Export Citation Format

Share Document