Smart Power Systems Rely on Standards for Information Models and Messaging — IEC 61850

Author(s):  
Karlheinz Schwarz
Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1442 ◽  
Author(s):  
Chun-Hung Liu ◽  
Jyh-Cherng Gu

Distributed energy resources (DERs) are being widely interconnected to electrical power grids. The dispersed and intermittent generational mixes bring technical and economic challenges to the power systems in terms of stability, reliability, and interoperability. In practice, most of the communication technologies in DER are provided by proprietary communication protocols, which are not designed for the prevention of cyber security over a wide area network, and methodology of DER integration is not unified. This has made it technically difficult for power utilities and aggregators to monitor and control the DER systems after they are interconnected with the electrical grids. Moreover, peer to peer communication between DER systems as well as local intelligent computation is required to reduce decision latency and enhance the stability of the smart grid or microgrid. In this paper, the first, novel architecture of IEC 61850 XMPP (extensible messaging and presence protocol) of the edge computing gateway, involving advanced concepts and technologies, was developed and completely studied to counter the abovementioned challenges. The results show that the proposed architecture can enhance the DER system’s effective integration, security in data communication and transparency for interoperability. The novel and advanced concepts involve first modeling the topology of the photovoltaic (PV) station to IEC 61850 information models according to the IEC 61850-7-4 logical nodes and the DER-specific logical nodes defined in IEC 61850-7-420. This guarantees the interoperability between DER and DER, DER and utility and DER and the energy service operator. The second step was to map the information models to IEC 61850-8-2 XMPP for the specific communication protocol in DER applications. XMPP protocol, a publish/subscribe communication mechanism, is recommended in DER applications because of its characteristics of cybersecurity and authenticated encryption. After that we enabled the edge computing capability for data processing and the analytics of the DER side for time-critical missions. The aggregated data was then sent to the control center in the cloud. By applying the edge computing architecture, the system reduced decision latency, improved data privacy and enhanced security. The goal of this paper was to introduce the practical methodologies of these novel concepts to academics and industrial engineers.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2337
Author(s):  
Linwei Chen ◽  
Haiyu Li ◽  
Thomas Charton ◽  
Ray Zhang

Interoperability testing and analysis tools provide a means for achieving and assuring the integrity of multivendor intelligent electronic devices (IEDs) data exchanges. However, the testing and analysis are very time consuming and error prone, and these problems worsen when a substation becomes large and complex during the engineering process, commission, replacement, maintenance, and extension. To address this challenge, this paper presents a virtual digital substation test system (VDSTS) with interoperability analysis tools for assessing and identifying the engineering challenges for the multiple-vendors digital substation. This VDSTS consists of three parts: (i) A virtual digital substation modelling for generating real-time digital substation primary plant operation and fault conditions, (ii) a standard IEC 61850-based substation protection, automation, and control (PAC) system architecture with multivendor IEDs and bay solutions, and (iii) multivendor Substation Configuration description Language (SCL) tools and in-house built data visualisation tool. The study focuses on the interoperability testing of sampled values (SV), generic object-oriented substation events (GOOSE), and manufacturing message specification (MMS) communication services, as defined in IEC 61850. The main issues identified are compatibility issues of SCL tools, protocol implementation issues, different information models, and application limitations. The outcomes will help utilities to reduce the risks associated with the general rollout of digital substations.


2018 ◽  
Vol 7 (3.8) ◽  
pp. 48
Author(s):  
Goutham Menon ◽  
Mahesh Ratheesh ◽  
Gopikrishna S Menon ◽  
Gautham S ◽  
P Kanakasabapathy

Advancements in power electronic systems has brought forth the modernization of residential power systems exponentially. The interfacing of AC and DC loads with various kinds of resources of energy has been achieved with the help of modern nanogrid architectures. This paper brings into depiction a Tapped Boost derived hybrid converter that can be used to meet the demands of both AC and DC loads having a solitary DC input. A voltage source inverter (VSI) bridge network is used instead of the single switch of a Tapped Boost converter. The VSI bridge has shoot-through protection in the inverter stage increasing its importance for smart power systems. The Tapped Boost derived converter also borrows the advantages provided by the Tapped Boost converter. The paper covers topics like the operation, steady-state analysis and operating modes of the proposed Tapped Boost-DHC. The output and input characteristics has also been tested and verified through simulatio


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2497 ◽  
Author(s):  
Hassan Alhelou ◽  
Mohamad-Esmail Hamedani-Golshan ◽  
Reza Zamani ◽  
Ehsan Heydarian-Forushani ◽  
Pierluigi Siano

Power systems are the most complex systems that have been created by men in history. To operate such systems in a stable mode, several control loops are needed. Voltage frequency plays a vital role in power systems which need to be properly controlled. To this end, primary and secondary frequency control loops are used to control the frequency of the voltage in power systems. Secondary frequency control, which is called Load Frequency Control (LFC), is responsible for maintaining the frequency in a desirable level after a disturbance. Likewise, the power exchanges between different control areas are controlled by LFC approaches. In recent decades, many control approaches have been suggested for LFC in power systems. This paper presents a comprehensive literature survey on the topic of LFC. In this survey, the used LFC models for diverse configurations of power systems are firstly investigated and classified for both conventional and future smart power systems. Furthermore, the proposed control strategies for LFC are studied and categorized into different control groups. The paper concludes with highlighting the research gaps and presenting some new research directions in the field of LFC.


Author(s):  
H. H. Alhelou

It is critical for today's power system to remain in a state of equilibrium under normal conditions and severe disturbances. Power imbalance between the load and the generation can severely affect system stability. Therefore, it is necessary that these imbalance conditions be addressed in the minimum time possible. It is well known that power system frequency is directly proportional to the speed of rotation of synchronous machines and is also a function of the active power demand. As a consequence, when active power demand is greater than the generation, synchronous generators tends to slow down and the frequency decreases to even below threshold if not quickly addressed. One of the most common methods of restoring frequency is the use of under frequency load shedding (UFLS) techniques. In this chapter, load shedding techniques are presented in general but with special focus on UFLS.


Sign in / Sign up

Export Citation Format

Share Document