Spatiotemporal Imaging of Nonequilibrium Current During Impact Ionization Avalanche in n-GaAs

2002 ◽  
pp. 463-474
Keyword(s):  
Author(s):  
P. Singh ◽  
V. Cozzolino ◽  
G. Galyon ◽  
R. Logan ◽  
K. Troccia ◽  
...  

Abstract The time delayed failure of a mesa diode is explained on the basis of dendritic growth on the oxide passivated diode side walls. Lead dendrites nucleated at the p+ side Pb-Sn solder metallization and grew towards the n side metallization. The infinitesimal cross section area of the dendrites was not sufficient to allow them to directly affect the electrical behavior of the high voltage power diodes. However, the electric fields associated with the dendrites caused sharp band bending near the silicon-oxide interface leading to electron tunneling across the band gap at velocities high enough to cause impact ionization and ultimately the avalanche breakdown of the diode. Damage was confined to a narrow path on the diode side wall because of the limited influence of the electric field associated with the dendrite. The paper presents experimental details that led to the discovery of the dendrites. The observed failures are explained in the context of classical semiconductor physics and electrochemistry.


2003 ◽  
Vol 50 (10) ◽  
pp. 2027-2031 ◽  
Author(s):  
C. Groves ◽  
R. Ghin ◽  
J.P.R. David ◽  
G.J. Rees

1965 ◽  
Vol 53 (9) ◽  
pp. 1263-1263
Author(s):  
W.W. Heinz ◽  
S. Okwit
Keyword(s):  

Atoms ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 33
Author(s):  
R.I. Campeanu ◽  
Colm T. Whelan

Triple differential cross sections (TDCS) are presented for the electron and positron impact ionization of inert gas atoms in a range of energy sharing geometries where a number of significant few body effects compete to define the shape of the TDCS. Using both positrons and electrons as projectiles has opened up the possibility of performing complementary studies which could effectively isolate competing interactions that cannot be separately detected in an experiment with a single projectile. Results will be presented in kinematics where the electron impact ionization appears to be well understood and using the same kinematics positron cross sections will be presented. The kinematics are then varied in order to focus on the role of distortion, post collision interaction (pci), and interference effects.


1998 ◽  
Vol 57 (5) ◽  
pp. R3161-R3164 ◽  
Author(s):  
Igor Bray ◽  
Dmitry V. Fursa ◽  
J. Röder ◽  
H. Ehrhardt

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jun Yin ◽  
Lian Liu ◽  
Yashu Zang ◽  
Anni Ying ◽  
Wenjie Hui ◽  
...  

AbstractHere, an engineered tunneling layer enhanced photocurrent multiplication through the impact ionization effect was proposed and experimentally demonstrated on the graphene/silicon heterojunction photodetectors. With considering the suitable band structure of the insulation material and their special defect states, an atomic layer deposition (ALD) prepared wide-bandgap insulating (WBI) layer of AlN was introduced into the interface of graphene/silicon heterojunction. The promoted tunneling process from this designed structure demonstrated that can effectively help the impact ionization with photogain not only for the regular minority carriers from silicon, but also for the novel hot carries from graphene. As a result, significantly enhanced photocurrent as well as simultaneously decreased dark current about one order were accomplished in this graphene/insulation/silicon (GIS) heterojunction devices with the optimized AlN thickness of ~15 nm compared to the conventional graphene/silicon (GS) devices. Specifically, at the reverse bias of −10 V, a 3.96-A W−1 responsivity with the photogain of ~5.8 for the peak response under 850-nm light illumination, and a 1.03-A W−1 responsivity with ∼3.5 photogain under the 365 nm ultraviolet (UV) illumination were realized, which are even remarkably higher than those in GIS devices with either Al2O3 or the commonly employed SiO2 insulation layers. This work demonstrates a universal strategy to fabricate broadband, low-cost and high-performance photo-detecting devices towards the graphene-silicon optoelectronic integration.


Author(s):  
Susarla Raghuram ◽  
Anil Bhardwaj ◽  
Damien Hutsemékers ◽  
Cyrielle Opitom ◽  
Jean Manfroid ◽  
...  

Abstract The recent observations show that comet C/2016 R2 (Pan-Starrs) has a unique and peculiar composition when compared with several other comets observed at 2.8 au heliocentric distance. Assuming solar resonance fluorescence is the only excitation source, the observed ionic emission intensity ratios are used to constrain the corresponding neutral abundances in this comet. We developed a physico-chemical model to study the ion density distribution in the inner coma of this comet by accounting for photon and electron impact ionization of neutrals, charge exchange and proton transfer reactions between ions and neutrals, and electron-ion thermal recombination reactions. Our calculations show that CO$_2^+$ and CO+ are the major ions in the inner coma, and close to the surface of nucleus CH3OH+, CH3OH$_2^+$ and O$_2^+$ are also important ions. By considering various excitation sources, we also studied the emission mechanisms of different excited states of CO+, CO$_2^+$, N$_2^+$, and H2O+. We found that the photon and electron impact ionization and excitation of corresponding neutrals significantly contribute to the observed ionic emissions for radial distances smaller than 300 km and at larger distances, solar resonance fluorescence is the major excitation source. Our modelled ion emission intensity ratios are consistent with the ground-based observations. Based on the modelled emission processes, we suggest that the observed ion emission intensity ratios can be used to derive the neutral composition in the cometary coma only when the ion densities are significantly controlled by photon and photoelectron impact ionization of neutrals rather than by the ion-neutral chemistry.


Sign in / Sign up

Export Citation Format

Share Document