scholarly journals Engineered tunneling layer with enhanced impact ionization for detection improvement in graphene/silicon heterojunction photodetectors

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jun Yin ◽  
Lian Liu ◽  
Yashu Zang ◽  
Anni Ying ◽  
Wenjie Hui ◽  
...  

AbstractHere, an engineered tunneling layer enhanced photocurrent multiplication through the impact ionization effect was proposed and experimentally demonstrated on the graphene/silicon heterojunction photodetectors. With considering the suitable band structure of the insulation material and their special defect states, an atomic layer deposition (ALD) prepared wide-bandgap insulating (WBI) layer of AlN was introduced into the interface of graphene/silicon heterojunction. The promoted tunneling process from this designed structure demonstrated that can effectively help the impact ionization with photogain not only for the regular minority carriers from silicon, but also for the novel hot carries from graphene. As a result, significantly enhanced photocurrent as well as simultaneously decreased dark current about one order were accomplished in this graphene/insulation/silicon (GIS) heterojunction devices with the optimized AlN thickness of ~15 nm compared to the conventional graphene/silicon (GS) devices. Specifically, at the reverse bias of −10 V, a 3.96-A W−1 responsivity with the photogain of ~5.8 for the peak response under 850-nm light illumination, and a 1.03-A W−1 responsivity with ∼3.5 photogain under the 365 nm ultraviolet (UV) illumination were realized, which are even remarkably higher than those in GIS devices with either Al2O3 or the commonly employed SiO2 insulation layers. This work demonstrates a universal strategy to fabricate broadband, low-cost and high-performance photo-detecting devices towards the graphene-silicon optoelectronic integration.

Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1981-1991 ◽  
Author(s):  
Zhiwen Li ◽  
Jing Wu ◽  
Cong Wang ◽  
Han Zhang ◽  
Wenjie Yu ◽  
...  

AbstractMoS2, as a typical representative of two-dimensional semiconductors, has been explored extensively in applications of optoelectronic devices because of its adjustable bandgap. However, to date, the performance of the fabricated photodetectors has been very sensitive to the surrounding environment owing to the large surface-to-volume ratio. In this work, we report on large-scale, high-performance monolayer MoS2 photodetectors covered with a 3-nm Al2O3 layer grown by atomic layer deposition. In comparison with the device without the Al2O3 stress liner, both the photocurrent and responsivity are improved by over 10 times under 460-nm light illumination, which is due to the tensile strain induced by the Al2O3 layer. Further characterization demonstrated state-of-the-art performance of the device with a responsivity of 16.103 A W−1, gain of 191.80, NEP of 7.96 × 10−15 W Hz−1/2, and detectivity of 2.73 × 1010 Jones. Meanwhile, the response rise time of the photodetector also reduced greatly because of the increased electron mobility and reduced surface defects due to the Al2O3 stress liner. Our results demonstrate the potential application of large-scale strained monolayer MoS2 photodetectors in next-generation imaging systems.


Author(s):  
Woo-Jae Lee ◽  
Susanta Bera ◽  
Hyun-Jae Woo ◽  
Jung-Won Ahn ◽  
Jong Seong Bae ◽  
...  

Low-temperature fuel cells have attracted a significant attention owing to their low cost and high performance. Herein, uniform Ru nanoparticles (NPs) with various size distribution were synthesized as a non-Pt...


2015 ◽  
Vol 764-765 ◽  
pp. 138-142 ◽  
Author(s):  
Fa Ta Tsai ◽  
Hsi Ting Hou ◽  
Ching Kong Chao ◽  
Rwei Ching Chang

This work characterizes the mechanical and opto-electric properties of Aluminum-doped zinc oxide (AZO) thin films deposited by atomic layer deposition (ALD), where various depositing temperature, 100, 125, 150, 175, and 200 °C are considered. The transmittance, microstructure, electric resistivity, adhesion, hardness, and Young’s modulus of the deposited thin films are tested by using spectrophotometer, X-ray diffraction, Hall effect analyzer, micro scratch, and nanoindentation, respectively. The results show that the AZO thin film deposited at 200 °C behaves the best electric properties, where its resistance, Carrier Concentration and mobility reach 4.3×10-4 Ωcm, 2.4×1020 cm-3, and 60.4 cm2V-1s-1, respectively. Furthermore, microstructure of the AZO films deposited by ALD is much better than those deposited by sputtering.


2012 ◽  
Vol 24 (7) ◽  
pp. 1255-1261 ◽  
Author(s):  
Xinyi Chen ◽  
Ekaterina Pomerantseva ◽  
Parag Banerjee ◽  
Keith Gregorczyk ◽  
Reza Ghodssi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document