Polymer-Based Colloidal Aggregates as a New Class of Drug Delivery Systems

2013 ◽  
pp. 659-682
Author(s):  
Cesare Cametti
Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 3 ◽  
Author(s):  
Fadwa Odeh ◽  
Hamdi Nsairat ◽  
Walhan Alshaer ◽  
Mohammad A. Ismail ◽  
Ezaldeen Esawi ◽  
...  

Soon after they were first described in 1990, aptamers were largely recognized as a new class of biological ligands that can rival antibodies in various analytical, diagnostic, and therapeutic applications. Aptamers are short single-stranded RNA or DNA oligonucleotides capable of folding into complex 3D structures, enabling them to bind to a large variety of targets ranging from small ions to an entire organism. Their high binding specificity and affinity make them comparable to antibodies, but they are superior regarding a longer shelf life, simple production and chemical modification, in addition to low toxicity and immunogenicity. In the past three decades, aptamers have been used in a plethora of therapeutics and drug delivery systems that involve innovative delivery mechanisms and carrying various types of drug cargos. However, the successful translation of aptamer research from bench to bedside has been challenged by several limitations that slow down the realization of promising aptamer applications as therapeutics at the clinical level. The main limitations include the susceptibility to degradation by nucleases, fast renal clearance, low thermal stability, and the limited functional group diversity. The solution to overcome such limitations lies in the chemistry of aptamers. The current review will focus on the recent arts of aptamer chemistry that have been evolved to refine the pharmacological properties of aptamers. Moreover, this review will analyze the advantages and disadvantages of such chemical modifications and how they impact the pharmacological properties of aptamers. Finally, this review will summarize the conjugation strategies of aptamers to nanocarriers for developing targeted drug delivery systems.


2016 ◽  
Vol 10 (2) ◽  
pp. 159-172 ◽  
Author(s):  
Ihor Tarnavchyk ◽  
◽  
Andriy Voronov ◽  
Volodymyr Donchak ◽  
Olga Budishevska ◽  
...  

The method for synthesis of a new class of amphiphilic oligoesters of pyromellitic acid is developed. As hydrophilic fragments polyethylene glycols or polyethylene glycol mono methyl ethers were used, as lipophilic ones – primary fatty alcohols or cholesterol. The structure of the synthesized oligoesters was confirmed by IR- and PMR-spectroscopy. The oligoesters could solubilize water-insoluble substances, for example such effective antitumor lipophilic drug as curcumin. The high solubilization capacity of the OEPA assemblies and their biodegradability, as well as other properties (size distribution, ζ-potential) make the oligoesters considered as promising materials for the design of drug delivery systems.


Author(s):  
G.E. Visscher ◽  
R. L. Robison ◽  
G. J. Argentieri

The use of various bioerodable polymers as drug delivery systems has gained considerable interest in recent years. Among some of the shapes used as delivery systems are films, rods and microcapsules. The work presented here will deal with the techniques we have utilized for the analysis of the tissue reaction to and actual biodegradation of injectable microcapsules. This work has utilized light microscopic (LM), transmission (TEM) and scanning (SEM) electron microscopic techniques. The design of our studies has utilized methodology that would; 1. best characterize the actual degradation process without artifacts introduced by fixation procedures and 2. allow for reproducible results.In our studies, the gastrocnemius muscle of the rat was chosen as the injection site. Prior to the injection of microcapsules the skin above the sites was shaved and tattooed for later recognition and recovery. 1.0 cc syringes were loaded with the desired quantity of microcapsules and the vehicle (0.5% hydroxypropylmethycellulose) drawn up. The syringes were agitated to suspend the microcapsules in the injection vehicle.


Sign in / Sign up

Export Citation Format

Share Document