— Metabolic Diversity and Flexibility for Hydrocarbon Biodegradation by Rhodococcus

2013 ◽  
pp. 249-281
2012 ◽  
Author(s):  
Shirley F. Nishino ◽  
Jim C. Spain ◽  
Sarah H. Craven ◽  
Johana Husserl ◽  
Zohre Kurt ◽  
...  

2021 ◽  
Author(s):  
Andrea Watzinger ◽  
Melanie Hager ◽  
Thomas Reichenauer ◽  
Gerhard Soja ◽  
Paul Kinner

AbstractMaintaining and supporting complete biodegradation during remediation of petroleum hydrocarbon contaminated groundwater in constructed wetlands is vital for the final destruction and removal of contaminants. We aimed to compare and gain insight into biodegradation and explore possible limitations in different filter materials (sand, sand amended with biochar, expanded clay). These filters were collected from constructed wetlands after two years of operation and batch experiments were conducted using two stable isotope techniques; (i) carbon isotope labelling of hexadecane and (ii) hydrogen isotope fractionation of decane. Both hydrocarbon compounds hexadecane and decane were biodegraded. The mineralization rate of hexadecane was higher in the sandy filter material (3.6 µg CO2 g−1 day−1) than in the expanded clay (1.0 µg CO2 g−1 day−1). The microbial community of the constructed wetland microcosms was dominated by Gram negative bacteria and fungi and was specific for the different filter materials while hexadecane was primarily anabolized by bacteria. Adsorption / desorption of petroleum hydrocarbons in expanded clay was observed, which might not hinder but delay biodegradation. Very few cases of hydrogen isotope fractionation were recorded in expanded clay and sand & biochar filters during decane biodegradation. In sand filters, decane was biodegraded more slowly and hydrogen isotope fractionation was visible. Still, the range of observed apparent kinetic hydrogen isotope effects (AKIEH = 1.072–1.500) and apparent decane biodegradation rates (k = − 0.017 to − 0.067 day−1) of the sand filter were low. To conclude, low biodegradation rates, small hydrogen isotope fractionation, zero order mineralization kinetics and lack of microbial biomass growth indicated that mass transfer controlled biodegradation.


2021 ◽  
Vol 9 (6) ◽  
pp. 1200
Author(s):  
Gareth E. Thomas ◽  
Jan L. Brant ◽  
Pablo Campo ◽  
Dave R. Clark ◽  
Frederic Coulon ◽  
...  

This study evaluated the effects of three commercial dispersants (Finasol OSR 52, Slickgone NS, Superdispersant 25) and three biosurfactants (rhamnolipid, trehalolipid, sophorolipid) in crude-oil seawater microcosms. We analysed the crucial early bacterial response (1 and 3 days). In contrast, most analyses miss this key period and instead focus on later time points after oil and dispersant addition. By focusing on the early stage, we show that dispersants and biosurfactants, which reduce the interfacial surface tension of oil and water, significantly increase the abundance of hydrocarbon-degrading bacteria, and the rate of hydrocarbon biodegradation, within 24 h. A succession of obligate hydrocarbonoclastic bacteria (OHCB), driven by metabolite niche partitioning, is demonstrated. Importantly, this succession has revealed how the OHCB Oleispira, hitherto considered to be a psychrophile, can dominate in the early stages of oil-spill response (1 and 3 days), outcompeting all other OHCB, at the relatively high temperature of 16 °C. Additionally, we demonstrate how some dispersants or biosurfactants can select for specific bacterial genera, especially the biosurfactant rhamnolipid, which appears to provide an advantageous compatibility with Pseudomonas, a genus in which some species synthesize rhamnolipid in the presence of hydrocarbons.


2021 ◽  
Vol 9 (4) ◽  
pp. 859
Author(s):  
Andrea Firrincieli ◽  
Andrea Negroni ◽  
Giulio Zanaroli ◽  
Martina Cappelletti

Increasing number of metagenome sequencing studies have proposed a central metabolic role of still understudied Archaeal members in natural and artificial ecosystems. However, their role in hydrocarbon cycling, particularly in the anaerobic biodegradation of aliphatic and aromatic hydrocarbons, is still mostly unknown in both marine and terrestrial environments. In this work, we focused our study on the metagenomic characterization of the archaeal community inhabiting the Mar Piccolo (Taranto, Italy, central Mediterranean) sediments heavily contaminated by petroleum hydrocarbons and polychlorinated biphenyls (PCB). Among metagenomic bins reconstructed from Mar Piccolo microbial community, we have identified members of the Asgardarchaeota superphylum that has been recently proposed to play a central role in hydrocarbon cycling in natural ecosystems under anoxic conditions. In particular, we found members affiliated with Thorarchaeota, Heimdallarchaeota, and Lokiarchaeota phyla and analyzed their genomic potential involved in central metabolism and hydrocarbon biodegradation. Metabolic prediction based on metagenomic analysis identified the malonyl-CoA and benzoyl-CoA routes as the pathways involved in aliphatic and aromatic biodegradation in these Asgardarchaeota members. This is the first study to give insight into the archaeal community functionality and connection to hydrocarbon degradation in marine sediment historically contaminated by hydrocarbons.


2020 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Saskia Rughöft ◽  
Nico Jehmlich ◽  
Tony Gutierrez ◽  
Sara Kleindienst

The application of chemical dispersants during marine oil spills can affect the community composition and activity of marine microorganisms. Several studies have indicated that certain marine hydrocarbon-degrading bacteria, such as Marinobacter spp., can be inhibited by chemical dispersants, resulting in lower abundances and/or reduced biodegradation rates. However, a major knowledge gap exists regarding the mechanisms underlying these physiological effects. Here, we performed comparative proteomics of the Deepwater Horizon isolate Marinobacter sp. TT1 grown under different conditions. Strain TT1 received different carbon sources (pyruvate vs. n-hexadecane) with and without added dispersant (Corexit EC9500A). Additional treatments contained crude oil in the form of a water-accommodated fraction (WAF) or chemically-enhanced WAF (CEWAF; with Corexit). For the first time, we identified the proteins associated with alkane metabolism and alginate biosynthesis in strain TT1, report on its potential for aromatic hydrocarbon biodegradation and present a protein-based proposed metabolism of Corexit components as carbon substrates. Our findings revealed that Corexit exposure affects hydrocarbon metabolism, chemotactic motility, biofilm formation, and induces solvent tolerance mechanisms, like efflux pumps, in strain TT1. This study provides novel insights into dispersant impacts on microbial hydrocarbon degraders that should be taken into consideration for future oil spill response actions.


2021 ◽  
Vol 61 (2) ◽  
pp. 88-109
Author(s):  
Ardhra Vijayan ◽  
Rejish Kumar Vattiringal Jayadradhan ◽  
Devika Pillai ◽  
Preena Prasannan Geetha ◽  
Valsamma Joseph ◽  
...  
Keyword(s):  

2021 ◽  
Vol 97 (3) ◽  
Author(s):  
Constantinos Xenophontos ◽  
Martin Taubert ◽  
W Stanley Harpole ◽  
Kirsten Küsel

ABSTRACT Quantifying the relative contributions of microbial species to ecosystem functioning is challenging, because of the distinct mechanisms associated with microbial phylogenetic and metabolic diversity. We constructed bacterial communities with different diversity traits and employed exoenzyme activities (EEAs) and carbon acquisition potential (CAP) from substrates as proxies of bacterial functioning to test the independent effects of these two aspects of biodiversity. We expected that metabolic diversity, but not phylogenetic diversity would be associated with greater ecological function. Phylogenetically relatedness should intensify species interactions and coexistence, therefore amplifying the influence of metabolic diversity. We examined the effects of each diversity treatment using linear models, while controlling for the other, and found that phylogenetic diversity strongly influenced community functioning, positively and negatively. Metabolic diversity, however, exhibited negative or non-significant relationships with community functioning. When controlling for different substrates, EEAs increased along with phylogenetic diversity but decreased with metabolic diversity. The strength of diversity effects was related to substrate chemistry and the molecular mechanisms associated with each substrate's degradation. EEAs of phylogenetically similar groups were strongly affected by within-genus interactions. These results highlight the unique flexibility of microbial metabolic functions that must be considered in further ecological theory development.


2003 ◽  
Vol 8 (5-6) ◽  
pp. 503-507 ◽  
Author(s):  
Zefiryn Cybulski ◽  
Ewa Dziurla ◽  
Ewa Kaczorek ◽  
Andrzej Olszanowski

Sign in / Sign up

Export Citation Format

Share Document