Prion Protein-Encoding Genes

Prion Biology ◽  
2013 ◽  
Author(s):  
Sead Chadi ◽  
Rachel Young ◽  
Sandrine Guillou ◽  
Gaelle Tilly ◽  
Frédérique Bitton ◽  
...  
2021 ◽  
Author(s):  
Blase Matthew LeBlanc ◽  
Rosamaria Yvette Moreno ◽  
Edwin Escobar ◽  
Mukesh Kumar Venkat Ramani ◽  
Jennifer S Brodbelt ◽  
...  

RNA polymerase II (RNAP II) is one of the primary enzymes responsible for expressing protein-encoding genes and some small nuclear RNAs. The enigmatic carboxy-terminal domain (CTD) of RNAP II and...


2012 ◽  
Vol 79 (1) ◽  
pp. 411-414 ◽  
Author(s):  
Afonso G. Abreu ◽  
Vanessa Bueris ◽  
Tatiane M. Porangaba ◽  
Marcelo P. Sircili ◽  
Fernando Navarro-Garcia ◽  
...  

ABSTRACTAutotransporter (AT) protein-encoding genes of diarrheagenicEscherichia coli(DEC) pathotypes (cah,eatA,ehaABCDJ,espC,espI,espP,pet,pic,sat, andtibA) were detected in typical and atypical enteropathogenicE. coli(EPEC) in frequencies between 0.8% and 39.3%. Although these ATs have been described in particular DEC pathotypes, their presence in EPEC indicates that they should not be considered specific virulence markers.


2017 ◽  
Vol 5 (7) ◽  
Author(s):  
Yannick Lara ◽  
Benoit Durieu ◽  
Luc Cornet ◽  
Olivier Verlaine ◽  
Rosmarie Rippka ◽  
...  

ABSTRACT Phormidesmis priestleyi ULC007 is an Antarctic freshwater cyanobacterium. Its draft genome is 5,684,389 bp long. It contains a total of 5,604 protein-encoding genes, of which 22.2% have no clear homologues in known genomes. To date, this draft genome is the first one ever determined for an axenic cyanobacterium from Antarctica.


2020 ◽  
Author(s):  
Thomas Taetzsch ◽  
Dillon Shapiro ◽  
Randa Eldosougi ◽  
Tracey Myers ◽  
Robert Settlage ◽  
...  

AbstractDuchenne muscular dystrophy (DMD) is characterized by progressive degeneration of skeletal muscles. To date, there are no treatments available to slow or prevent the disease. Hence, it remains essential to identify molecular factors that promote muscle biogenesis since they could serve as therapeutic targets for treating DMD. While the muscle enriched microRNA, miR-133b, has been implicated in the biogenesis of muscle fibers, its role in DMD remains unknown. To assess the role of miR-133b in DMD-affected skeletal muscles, we genetically ablated miR-133b in the mdx mouse model of DMD. In the absence of miR-133b, the tibialis anterior muscle of juvenile and adult mdx mice is populated by small muscle fibers with centralized nuclei, exhibits increased fibrosis, and thickened interstitial space. Additional analysis revealed that loss of miR-133b exacerbates DMD-pathogenesis partly by altering the number of satellite cells and levels of protein-encoding genes, including previously identified miR-133b targets as well as genes involved in cell proliferation and fibrosis. Altogether, our data demonstrate that skeletal muscles utilize miR-133b to mitigate the deleterious effects of DMD.


2021 ◽  
Vol 10 (1) ◽  
pp. 67
Author(s):  
Andrey Rumyantsev ◽  
Anton Sidorin ◽  
Artemii Volkov ◽  
Ousama Al Shanaa ◽  
Elena Sambuk ◽  
...  

Komagataella phaffii yeast is one of the most important biocompounds producing microorganisms in modern biotechnology. Optimization of media recipes and cultivation strategies is key to successful synthesis of recombinant proteins. The complex effects of proline on gene expression in the yeast K. phaffii was analyzed on the transcriptome level in this work. Our analysis revealed drastic changes in gene expression when K. phaffii was grown in proline-containing media in comparison to ammonium sulphate-containing media. Around 18.9% of all protein-encoding genes were differentially expressed in the experimental conditions. Proline is catabolized by K. phaffii even in the presence of other nitrogen, carbon and energy sources. This results in the repression of genes involved in the utilization of other element sources, namely methanol. We also found that the repression of AOX1 gene promoter with proline can be partially reversed by the deletion of the KpPUT4.2 gene.


2019 ◽  
Vol 8 (39) ◽  
Author(s):  
Nicholas Martinez ◽  
Eric Williams ◽  
Heather Newkirk ◽  
Mei Liu ◽  
Jason J. Gill ◽  
...  

Klebsiella pneumoniae is a multidrug-resistant bacterium causing many severe hospital-acquired infections. Here, we describe siphophage Sweeny that infects K. pneumoniae. Of its 78 predicted protein-encoding genes, a functional assignment was given to 36 of them. Sweeny is most closely related to T1-like phages at the protein level.


2004 ◽  
Vol 24 (24) ◽  
pp. 10975-10985 ◽  
Author(s):  
Mohamed A. Ghazy ◽  
Seth A. Brodie ◽  
Michelle L. Ammerman ◽  
Lynn M. Ziegler ◽  
Alfred S. Ponticelli

ABSTRACT Transcription factor IIF (TFIIF) is required for transcription of protein-encoding genes by eukaryotic RNA polymerase II. In contrast to numerous studies establishing a role for higher eukaryotic TFIIF in multiple steps of the transcription cycle, relatively little has been reported regarding the functions of TFIIF in the yeast Saccharomyces cerevisiae. In this study, site-directed mutagenesis, plasmid shuffle complementation assays, and primer extension analyses were employed to probe the functional domains of the S. cerevisiae TFIIF subunits Tfg1 and Tfg2. Analyses of 35 Tfg1 alanine substitution mutants and 19 Tfg2 substitution mutants identified 5 mutants exhibiting altered properties in vivo. Primer extension analyses revealed that the conditional growth properties exhibited by the tfg1-E346A, tfg1-W350A, and tfg2-L59K mutants were associated with pronounced upstream shifts in transcription initiation in vivo. Analyses of double mutant strains demonstrated functional interactions between the Tfg1 mutations and mutations in Tfg2, TFIIB, and RNA polymerase II. Importantly, biochemical results demonstrated an altered interaction between mutant TFIIF protein and RNA polymerase II. These results provide direct evidence for the involvement of S. cerevisiae TFIIF in the mechanism of transcription start site utilization and support the view that a TFIIF-RNA polymerase II interaction is a determinant in this process.


mBio ◽  
2013 ◽  
Vol 4 (6) ◽  
Author(s):  
Eric G. Matson ◽  
Adam Z. Rosenthal ◽  
Xinning Zhang ◽  
Jared R. Leadbetter

ABSTRACTWhen prokaryotic cells acquire mutations, encounter translation-inhibiting substances, or experience adverse environmental conditions that limit their ability to synthesize proteins, transcription can become uncoupled from translation. Such uncoupling is known to suppress transcription of protein-encoding genes in bacteria. Here we show that the trace element selenium controls transcription of the gene for the selenocysteine-utilizing enzyme formate dehydrogenase (fdhFSec) through a translation-coupled mechanism in the termite gut symbiontTreponema primitia, a member of the bacterial phylumSpirochaetes. We also evaluated changes in genome-wide transcriptional patterns caused by selenium limitation and by generally uncoupling translation from transcription via antibiotic-mediated inhibition of protein synthesis. We observed that inhibiting protein synthesis inT. primitiainfluences transcriptional patterns in unexpected ways. In addition to suppressing transcription of certain genes, the expected consequence of inhibiting protein synthesis, we found numerous examples in which transcription of genes and operons is truncated far downstream from putative promoters, is unchanged, or is even stimulated overall. These results indicate that gene regulation in bacteria allows for specific post-initiation transcriptional responses during periods of limited protein synthesis, which may depend both on translational coupling and on unclassified intrinsic elements of protein-encoding genes.IMPORTANCEA large body of literature demonstrates that the coupling of transcription and translation is a general and essential method by which bacteria regulate gene expression levels. However, the potential role of noncanonical amino acids in regulating transcriptional output via translational control remains, for the most part, undefined. Furthermore, the genome-wide transcriptional state in response to translational decoupling is not well quantified. The results presented here suggest that the noncanonical amino acid selenocysteine is able to tune transcription of an important metabolic gene via translational coupling. Furthermore, a genome-wide analysis reveals that transcriptional decoupling produces a wide-ranging effect and that this effect is not uniform. These results exemplify how growth conditions that impact translational processivity can rapidly feed back on transcriptional productivity of prespecified groups of genes, providing bacteria with an efficient response to environmental changes.


Sign in / Sign up

Export Citation Format

Share Document