Status of cross-laminated timber construction in North-America

2013 ◽  
pp. 94-101
2021 ◽  
Author(s):  
Victoria Ruth McClung

Cross-laminated timber (CLT) panels have potential market in North America for building mid-rise structures due to their good structural and seismic performance, lightweight, and prefabricated nature. However, to ensure long-term durability, the hygrothermal performance of CLT wall assemblies needs to be evaluated in terms of drying and wetting potential before their widespread adoption in North America. A test wall was constructed with initially wetted CLT panels, and monitored over a year. The drying behaviour of the panels was analysed, and results were compared to hygrothermal simulations. It was found from the field data that no tested wall assemblies in the given climate prevented the panels from drying in enough time to prevent decay initiation. The hygrothermal simulation program is capable of predicting general trends, and can predict if a wall be safe, but tends to be overly conservative. Further refinement of the model for wood is needed.


2021 ◽  
Author(s):  
Zhiqiang Wang ◽  
Tianxiao Yin

Cross-laminated timber (CLT) is a popular engineering wood product in recent years. It has some characteristics of configuration and mechanical properties, which makes it an excellent building material for floor, roof and other places. In Europe and North America, lots of middle and high-rise buildings have adopted CLT as their main structural component. CLT has recently been used to construct public buildings in China. As a building material, the lower rolling shear properties of CLT has always been a concern. To overcome this shortcoming of CLT, the structural composite lumber and bamboo have been employed to develop hybrid CLT. This chapter also presents the latest development and advances of CLT in China.


2021 ◽  
Vol 71 (2) ◽  
pp. 124-132
Author(s):  
Kenneth E. Udele ◽  
Jeffrey J. Morrell ◽  
Arijit Sinha

Abstract Cross laminated timber (CLT) is a mass timber product that is gaining popularity in construction within North America. CLT is made up of wood, a building material of biological origin. Therefore, these materials are at a risk of decay upon intrusion of moisture, a situation that could lead to loss of confidence in the material. Ensuring durability and optimum performance of building elements throughout their expected service life will require an understanding of the potential for decay and the possible consequences. This paper reviews the various possibilities of moisture intrusion in CLT, their potential effects on the physical and mechanical properties of CLT, and ultimately the associated biological decay risks. The paper concludes by enumerating variables that are critical and should be evaluated to completely understand decay in CLT panels, stemming from a thorough review of previous studies and methods used to evaluate decay in mass timber.


2019 ◽  
Vol 25 (2) ◽  
pp. 53-62 ◽  
Author(s):  
Eneli Liisma ◽  
Babette Liseth Kuus ◽  
Villu Kukk ◽  
Targo Kalamees

This paper focuses on cross-laminated timber (CLT) and how it is affected by the dynamic properties of moisture during installation in the cold climate of Estonia. The moisture safety principles are designed using a case study of comparable activities with 4D principles and on-site water content monitoring. On-site water content monitoring was done on the CLT elements that were installed and a parallel polygon specimen. Polygon testing was arranged with reduced size CLT elements subject to different conditions, with some exposed to the climate, some protected from precipitation, and some covered with film. The moisture content (MC) of the uncovered horizontal CLT element that was exposed to the climate reached over 25% after higher precipitation and the MC after prolonged direct exposure can reach up to 40% in a week, giving a clear signal of high risk areas for moisture safety. Installing a partly weather protected CLT element without a preliminary roof is a high-risk arrangement, but is essentially possible in a cold climate. Moisture safety pre-planning and a lean strategy must be applied with timber construction.


2021 ◽  
Author(s):  
Victoria Ruth McClung

Cross-laminated timber (CLT) panels have potential market in North America for building mid-rise structures due to their good structural and seismic performance, lightweight, and prefabricated nature. However, to ensure long-term durability, the hygrothermal performance of CLT wall assemblies needs to be evaluated in terms of drying and wetting potential before their widespread adoption in North America. A test wall was constructed with initially wetted CLT panels, and monitored over a year. The drying behaviour of the panels was analysed, and results were compared to hygrothermal simulations. It was found from the field data that no tested wall assemblies in the given climate prevented the panels from drying in enough time to prevent decay initiation. The hygrothermal simulation program is capable of predicting general trends, and can predict if a wall be safe, but tends to be overly conservative. Further refinement of the model for wood is needed.


Sign in / Sign up

Export Citation Format

Share Document