Bacillus cereus Food Poisoning

2013 ◽  
pp. 20-32
Author(s):  
Per Granum
2018 ◽  
Vol 7 (2) ◽  
pp. 131-136
Author(s):  
Nasir Ahmad

Background: On May 4th, 2016, at 12:30 district surveillance officer of Magelang Health Department received reports from Public Health Center of Bandongan about 21 students of SDN 1 Trasan who suffered from the same food-poisoning symptoms. Objective: Investigation was carried out to identify the source, how it spread and how to control it. Methods: This study used descriptive analytic and mapping the cases distribution location. The case was people experiencing symptoms of dizziness or abdominal pain or nausea or vomiting. Data analysis was done by using bivariate analysis. Data collection were done through interviews, observations and laboratory tests on the food samples. Results: The case was 50 students (from 1-6 grade students). The perceived symptoms were dizziness (77%), nausea (42%), abdominal pain (40%) and vomiting (8%). Attack rate found ranged from 14.3% to 60% with the highest Attack rate found on class three (60%). The incubation period of 15-240 minutes (mean 72.3 minutes). Calamari like positive Bacillus cereus and Rhodamine-B 10 mg/kg. Conclusion: The outbreak of food poisoning because calamari like contaminated Bacillus cereus. We suggested the school committee to provide the socialization of harmful food for the students. The teachers should restrict the permission for the food vendor to sell at school.   Keywords: Bacillus cereus, , Food Poisoning, Outbreak, Rhodamine B, School Food


2021 ◽  
Vol 12 (1) ◽  
pp. 85-93
Author(s):  
Wallapat Phongtang ◽  
Ekachai Chukeatirote

Abstract Bacillus cereus is considered to be an important food poisoning agent causing diarrhea and vomiting. In this study, the occurrence of B. cereus bacteriophages in Thai fermented soybean products (Thua Nao) was studied using five B. cereus sensu lato indicator strains (four B. cereus strains and one B. thuringiensis strain). In a total of 26 Thua Nao samples, there were only two bacteriophages namely BaceFT01 and BaceCM02 exhibiting lytic activity against B. cereus. Morphological analysis revealed that these two bacteriophages belonged to the Myoviridae. Both phages were specific to B. cereus and not able to lyse other tested bacteria including B. licheniformis and B. subtilis. The two phages were able to survive in a pH range between 5 and 12. However, both phages were inactive either by treatment of 50°C for 2 h or exposure of UV for 2 h. It should be noted that both phages were chloroform-insensitive, however. This is the first report describing the presence of bacteriophages in Thua Nao products. The characterization of these two phages is expected to be useful in the food industry for an alternative strategy including the potential use of the phages as a biocontrol candidate against foodborne pathogenic bacteria.


1992 ◽  
Vol 54 (3) ◽  
pp. 443-446 ◽  
Author(s):  
Kunihiro SHINAGAWA ◽  
Shoji OTAKE ◽  
Naonori MATSUSAKA ◽  
Shunji SUGII

2014 ◽  
Vol 80 (8) ◽  
pp. 2493-2503 ◽  
Author(s):  
Sara Esther Diomandé ◽  
Stéphanie Chamot ◽  
Vera Antolinos ◽  
Florian Vasai ◽  
Marie-Hélène Guinebretière ◽  
...  

ABSTRACTThe different strains ofBacillus cereuscan grow at temperatures covering a very diverse range. SomeB. cereusstrains can grow in chilled food and consequently cause food poisoning. We have identified a new sensor/regulator mechanism involved in low-temperatureB. cereusgrowth. Construction of a mutant of this two-component system enabled us to show that this system, called CasKR, is required for growth at the minimal temperature (Tmin). CasKR was also involved in optimal cold growth aboveTminand in cell survival belowTmin. Microscopic observation showed that CasKR plays a key role in cell shape during cold growth. Introducing thecasKRgenes in a ΔcasKRmutant restored its ability to grow atTmin. Although it was first identified in the ATCC 14579 model strain, this mechanism has been conserved in most strains of theB. cereusgroup. We show that the role of CasKR in cold growth is similar in otherB. cereus sensu latostrains with different growth temperature ranges, including psychrotolerant strains.


2017 ◽  
pp. 395-405 ◽  
Author(s):  
M.W. Griffiths ◽  
H. Schraft

2015 ◽  
Vol 82 (1) ◽  
pp. 289-296 ◽  
Author(s):  
Varvara Tsilia ◽  
Frederiek-Maarten Kerckhof ◽  
Andreja Rajkovic ◽  
Marc Heyndrickx ◽  
Tom Van de Wiele

ABSTRACTAdhesion to the intestinal epithelium could constitute an essential mechanism ofBacillus cereuspathogenesis. However, the enterocytes are protected by mucus, a secretion composed mainly of mucin glycoproteins. These may serve as nutrients and sites of adhesion for intestinal bacteria. In this study, the food poisoning bacteriumB. cereusNVH 0500/00 was exposedin vitroto gastrointestinal hurdles prior to evaluation of its attachment to mucin microcosms and its ability to produce nonhemolytic enterotoxin (Nhe). The persistence of mucin-adherentB. cereusafter simulated gut emptying was determined using a mucin adhesion assay. The stability of Nhe toward bile and pancreatin (intestinal components) in the presence of mucin agar was also investigated.B. cereuscould grow and simultaneously adhere to mucin duringin vitroileal incubation, despite the adverse effect of prior exposure to a low pH or intestinal components. The final concentration ofB. cereusin the simulated lumen at 8 h of incubation was 6.62 ± 0.87 log CFU ml−1. At that point, the percentage of adhesion was approximately 6%. No enterotoxin was detected in the ileum, due to either insufficient bacterial concentrations or Nhe degradation. Nevertheless, mucin appears to retainB. cereusand to supply it to the small intestine after simulated gut emptying. Additionally, mucin may play a role in the protection of enterotoxins from degradation by intestinal components.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1899
Author(s):  
Angela Michela Immacolata Montone ◽  
Federico Capuano ◽  
Andrea Mancusi ◽  
Orlandina Di Maro ◽  
Maria Francesca Peruzy ◽  
...  

Bacillus cereus is a spoilage bacterium and is recognized as an agent of food poisoning. Two food-borne illnesses are caused by B. cereus: a diarrheal disease, associated with cytotoxin K, hemolysin BL, non-hemolytic enterotoxin and enterotoxin FM, and an emetic syndrome, associated with the cereulide toxin. Owing to the heat resistance of B. cereus and its ability to grow in milk, this organism should be considered potentially hazardous in dairy products. The present study assessed the risk of B. cereus poisoning due to the consumption of water buffalo mozzarella cheese. A total of 340 samples were analyzed to determine B. cereus counts (ISO 7932:2005); isolates underwent molecular characterization to detect the presence of genes encoding toxins. Eighty-nine (26.1%) samples harbored B. cereus strains, with values ranging from 2.2 × 102 to 2.6 × 106 CFU/g. Isolates showed eight different molecular profiles, and some displayed virulence characteristics. Bacterial counts and the toxin profiles of isolates were evaluated both separately and jointly to assess the risk of enteritis due to B. cereus following the consumption of buffalo mozzarella cheese. In conclusion, the results of the present study showed that the risk of poisoning by B. cereus following the consumption of this cheese was moderate.


Sign in / Sign up

Export Citation Format

Share Document