The research status of RDB of composite beams in negative moment region

Author(s):  
Z Zhang ◽  
Z Zhang
2018 ◽  
Vol 11 (2) ◽  
pp. 331-356 ◽  
Author(s):  
A. D. PIASSI ◽  
J. V. DIAS ◽  
A. F. G. CALENZANI ◽  
F. C. C. MENANDRO

Abstract In the region of negative bending moments of continuous and semi-continuous steel and concrete composite beams, the inferior portion of the steel section is subjected to compression while the top flange is restricted by the slab, which may cause a global instability limit state know as lateral distortional buckling (LDB) characterized by a lateral displacement and rotation of the bottom flange with a distortion of the section’s web when it doesn’t have enough flexural rigidity. The ABNT NBR 8800:2008 provides an approximate procedure for the verification of this limit state, in which the resistant moment to LDB is obtained from the elastic critical moment in the negative moment region. One of the essential parameters for the evaluation of the critical moment is the composite beam’s rotational rigidity. This procedure is restricted only to to steel and concrete composite beams with sections that have plane webs. In this paper, an equation for the calculation of the rotational rigidity of cellular sections was developed in order to determine the LDB elastic critical moment. The formulation was verified by numerical analyses performed in ANSYS and its efficiency was confirmed. Finally, the procedure described in ABNT NBR 8800:2008 for the calculation of the critical LDB moment was expanded to composite beams with cellular sections in a numerical example with the appropriate modifications in geometric properties and rotational rigidity.


2013 ◽  
Vol 639-640 ◽  
pp. 807-811
Author(s):  
Yang Wang ◽  
Tian Li

To investigate the flexural bearing capacity in negative moment region of composite beams,we examined different ends constraint components. The modeling of the beam ends connected framework has been done by the finite element software ANSYS. The concrete thickness, slab reinforcement ratio and different component at the edge of the composite framework in the negative moment region are taken into account. The performance during the process of deformation and failure are got by nonlinear analysis. The flexural bearing capacity was reported, with the negative moment region of the composite frame beam, it revealed great differences when the beams are different component. Simulation results show that the concrete thickness take the biggest influence on bearing capacity. The results showed the behaviors of the composite frame beams are different with positive moment region, and calculation based on current code for design of steel structure (GB50017-2003) would be a big deviation.


1975 ◽  
Vol 2 (1) ◽  
pp. 98-115
Author(s):  
A. E. Long ◽  
K. Van Dalen ◽  
P. Csagoly

The fatigue behavior of the negative moment region of continuous steel–concrete composite beams under Canadian temperature conditions was studied. Tests were conducted on three 26 ft 0 in. (7.92 m) long beams, continuous over a central support, and on 11 conventional push-out specimens. These were supplemented by a theoretical study of the internal forces in the beams using an iterative method of analysis.The close agreement between measured and theoretical strains and deflections indicated that good interaction was achieved throughout the length of the beams. The beams sustained 500 000 cycles of loading with no serious deterioration of composite action. The pattern of stud failures was consistent from beam to beam and reflected closely the calculated distribution of horizontal shear force at the steel–concrete interface. Stud shear connectors in the negative moment region where the slab had cracked in tension were found to be slightly less effective than studs in the positive bending moment regions.Neither the detailed study of individual connectors in the beams nor the results of the push-out tests show evidence of a reduction in the fatigue life of studs at −20 °F (−29 °C) relative to room temperature. The beams also exhibited no significant difference in their overall performance at these two temperatures.


2012 ◽  
Vol 166-169 ◽  
pp. 414-419
Author(s):  
Li Hua Chen ◽  
Fei Xiao ◽  
Qi Liang Jin

Based on the theoretical analysis and testing results, some key issues in design of outer-plated steel-concrete continuous composite beams are discussed. The influence of the form of steel beam upper flange on the behavior of composite beam is analyzed. The requirements about longitudinal reinforcement strength in the concrete flange of the negative moment region are given. It is suggested that the moment-shear interaction should be neglected when calculating the flexural capacity of outer-plated steel-concrete composite beams under negative bending moment. The behavior of longitudinal shear resistance at the interface between the concrete flange and web of composite beam is studied, and the related calculating formula is put forward based on the structural features of the composite beam.


2013 ◽  
Vol 838-841 ◽  
pp. 661-664
Author(s):  
Liang Li Xiao ◽  
Ming Yang Pan ◽  
Jian Wei Han

It is very crucial to analyze the flexural bearing capacity of the steel-high strength concrete composite beams, but the combination on the flange of steel beam and their bearing capacity is limited with certain inevitability,in addition, in the negative bending regions of continuous composite beams, with the constant increase of load, the process of the whole structure will cause damages in the negative moment region. In order to avoid this kind of damages, we must use general finite element program ANSYS to analyze thebearing capacity of the steel and high strength concrete composite beams. Besides further studying the influence factors of bearing capacity, and ensuring the safety of our engineering performance can be in favor of the engineering structure.


2021 ◽  
Vol 11 (21) ◽  
pp. 10305
Author(s):  
Mu-Xuan Tao ◽  
Zi-Ang Li ◽  
Qi-Liang Zhou ◽  
Li-Yan Xu

Vertical deflection of a frame beam is an important indicator in the limit-state analysis of frame structures, particularly for steel–concrete composite beams, which are usually designed with large spans and heavy loads. In this study, the equivalent flexural stiffness of composite frame beams is analysed to evaluate their vertical deflection. A theoretical beam model with a spring constraint boundary and varied stiffness segments is established to consider the influence of both the rotation restraint stiffness at the beam ends and the cracked section in the negative moment region, such that the inelastic bending deformation of the composite beams can be elaborately described. By an extensive parametric analysis, a fitting formula for evaluating the equivalent flexural stiffness of the composite beams, including the effects of the rotational constraint and the concrete cracking, is obtained. The validity of the proposed formula is demonstrated by comparing its calculation accuracy with those of existing design formulas for analysing the equivalent flexural stiffness of the composite beam members. Moreover, its utility is further verified by conducting non-linear finite element simulations of structural systems to examine the serviceability limit state and the entire process evolution of beam deflections under vertical loading. Finally, to facilitate the practical application of the proposed formula in engineering design, a simplified method to calculate the deflection of composite beams, which utilises the internal force distribution of elastic analysis, is presented based on the concept of equivalent flexural stiffness.


Structures ◽  
2020 ◽  
Vol 24 ◽  
pp. 640-649 ◽  
Author(s):  
Jianan Qi ◽  
Zhao Cheng ◽  
Jingquan Wang ◽  
Yiqun Tang

Sign in / Sign up

Export Citation Format

Share Document