Electric-field control of non-volatile magnetization switching without external-magnetic-field bias in CoFeB/(011)-PMN-0.3PT heterostructures

2015 ◽  
Vol 109 (1) ◽  
pp. 17008 ◽  
Author(s):  
Yuanjun Yang ◽  
Yongqi Dong ◽  
Meng Meng Yang ◽  
Hao He ◽  
Bin Hong ◽  
...  
2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Swati Baruah ◽  
U. Sarma ◽  
R. Ganesh

Lane formation dynamics in externally driven pair-ion plasma (PIP) particles is studied in the presence of external magnetic field using Langevin dynamics (LD) simulation. The phase diagram obtained distinguishing the no-lane and lane states is systematically determined from a study of various Coulomb coupling parameter values. A peculiar lane formation-disintegration parameter space is identified; lane formation area extended to a wide range of Coulomb coupling parameter values is observed before disappearing to a mixed phase. The different phases are identified by calculating the order parameter. This and the critical parameters are calculated directly from LD simulation. The critical electric field strength value above which the lanes are formed distinctly is obtained, and it is observed that in the presence of the external magnetic field, the PIP system requires a higher value of the electric field strength to enter into the lane formation state than that in the absence of the magnetic field. We further find out the critical value of electric field frequency beyond which the system exhibits a transition back to the disordered state and this critical frequency is found as an increasing function of the electric field strength in the presence of an external magnetic field. The movement of the lanes is also observed in a direction perpendicular to that of the applied electric and magnetic field directions, which reveals the existence of the electric field drift in the system under study. We also use an oblique force field as the external driving force, both in the presence and absence of the external magnetic field. The application of this oblique force changes the orientation of the lane structures for different applied oblique angle values.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Xudong Shen ◽  
Long Zhou ◽  
Yisheng Chai ◽  
Yan Wu ◽  
Zhehong Liu ◽  
...  

Abstract All the magnetoelectric properties of scheelite-type DyCrO4 are characterized by temperature- and field-dependent magnetization, specific heat, permittivity, electric polarization, and neutron diffraction measurements. Upon application of a magnetic field within ±3 T, the nonpolar collinear antiferromagnetic structure leads to a large linear magnetoelectric effect with a considerable coupling coefficient. An applied electric field can induce the converse linear magnetoelectric effect, realizing magnetic field control of ferroelectricity and electric field control of magnetism. Furthermore, a higher magnetic field (>3 T) can cause a metamagnetic transition from the initially collinear antiferromagnetic structure to a canted structure, generating a large ferromagnetic magnetization up to 7.0 μB f.u.−1. Moreover, the new spin structure can break the space inversion symmetry, yielding ferroelectric polarization, which leads to coupling of ferromagnetism and ferroelectricity with a large ferromagnetic component.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Oren Ben Dor ◽  
Shira Yochelis ◽  
Anna Radko ◽  
Kiran Vankayala ◽  
Eyal Capua ◽  
...  

Author(s):  
Jiahao Liu ◽  
Liang Fang

Using the inverse piezoelectric effect and inverse magnetostrictive effect in a multiferroic heterojunction, an electric field is able to control the magnetization switching of a uniaxial nanomagnet. Compared with traditional spintronic devices based on magnetic field, multiferroic nanomagnet devices have the advantages of ultra-low consumption and high radiation resistance, showing great application potential in modern high-integrated circuits and military electronic systems. However, the difficulties of electric field control of complete magnetization reversal of the nanomagnet and nanomagnet arrays in a nanomagnetic logic gate still restrict the developments of multiferroic nanomagnet device. In this chapter, the uniaxial nanomagnets in multiferroic heterojunctions are mainly discussed. The two core problems of the electric field control of nanomagnets and nanomagnetic logic gate are well solved.


Author(s):  
Baptiste Trotabas ◽  
Renaud Gueroult

Abstract The benefits of thermionic emission from negatively biased electrodes for perpendicular electric field control in a magnetized plasma are examined through its combined effects on the sheath and on the plasma potential variation along magnetic field lines. By increasing the radial current flowing through the plasma thermionic emission is confirmed to improve control over the plasma potential at the sheath edge compared to the case of a cold electrode. Conversely, thermionic emission is shown to be responsible for an increase of the plasma potential drop along magnetic field lines in the quasi-neutral plasma. These results suggest that there exists a trade-off between electric field longitudinal uniformity and amplitude when using negatively biased emissive electrodes to control the perpendicular electric field in a magnetized plasma.


2019 ◽  
Vol 129 ◽  
pp. 77-90 ◽  
Author(s):  
M.F.C. Fobasso ◽  
A.J. Fotue ◽  
S.C. Kenfack ◽  
C.M. Ekengue ◽  
C.D.G. Ngoufack ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document