scholarly journals Noncommutative gravity and the relevance of the θ -constant deformation

2017 ◽  
Vol 118 (2) ◽  
pp. 21002 ◽  
Author(s):  
M. Dimitrijević Ćirić ◽  
B. Nikolić ◽  
V. Radovanović
2020 ◽  
Vol 38 (4A) ◽  
pp. 552-560
Author(s):  
Anwar H. Zabon ◽  
Aseel H. Abed

Springback forecasting of sheet formation is constantly remarkable problem in the métier, due to their influence the great in the definitive shape of the product. Study presents effects of pretension in tow rolling direction (0, 45 degree) on the springback behavior of the (Brass 65-35) sheet under V-die bending by an experimental. The pretension ranges from five different pretensions levels starting from 11% to 55% from total strain in each rolling direction by increment of 11%. used in punching that was performed at a constant deformation velocity of (5 mm/min) then bent on a 90° V-shaped die for the springback evaluation. The results from experiment indicate that the springback increase with pretension ratio and the springback in 45 degree is higher in rolling direction.


2010 ◽  
Vol 46 (1) ◽  
pp. 51-57 ◽  
Author(s):  
B. Trumic ◽  
D. Stankovic ◽  
A. Ivanovic

In order to form the necessary data base on platinum and platinum metals, certain tests were carried out on platinum samples of different purity of 99.5%, 99.9% and 99.99%. The degree of cold deformation, annealing temperature and chemical assays were tested as well as their impact on the mechanical properties of platinum. The Vickers hardness (HV) values were determined with different deformation degree, starting from annealing temperatures for platinum of different purity and tensile strength (Rm), flow limit (Rp0,2) and elongation (A) in the function of annealing temperatures and annealing time at a constant deformation degree.


1985 ◽  
Vol 58 (1) ◽  
pp. 164-175 ◽  
Author(s):  
Shau-Chew Wang ◽  
Eberhard A. Meinecke

Abstract The buckling of viscoelastic columns has been considered from both a theoretical and an experimental perspective. The fact that buckling occurs at relatively low strain where the SBR is nearly linearly viscoelastic allowed several simplifications in the theoretical development, leading to closed form predictions of the loading and unloading curves. This treatment neglects gravitational effects and carbon secondary structure effects and fits the experimental data best at HAF loadings around 30 phr. At lower carbon black loadings, the gravitational effects caused the experimental Euler load to be less than predicted from linear viscoelasticity theory, while at higher carbon black loadings, the carbon black structure led to higher Euler loads than predicted.


Author(s):  
Burak Erman ◽  
James E. Mark

The important postulate that intermolecular interactions are independent of extent of deformation leads directly to the conclusion that such interactions cannot contribute to an energy of elastic deformation ΔEel at constant volume. In the earliest theories of rubberlike elasticity, it was additionally assumed that, intramolecular contributions to ΔEel were likewise nil. In this idealization that the total ΔEel is zero, the elastic retractive force exhibited by a deformed polymer network would be entirely entropic in origin. At the molecular level, this would correspond, of course, to assuming all configurations of a network chain to be of exactly the same conformational energy and thus the average configuration to be independent of temperature. Under these circumstances, the dependence of stress on temperature is strikingly simple, as shown, for example, by the equation . . . f* = υkT/V (〈r2〉i/〈r2〉0)(α – α-2) . . . . . . (9.1) . . . that characterizes a polymer network in elongation where, it should be recalled, 〈r2〉i3/2 is proportional to the volume of the network. This additional assumption that 〈r2〉0 is independent of temperature would lead to the prediction that the elastic stress determined at constant volume and elongation α is directly proportional to the absolute temperature. Such network chains would be akin to the particles of an ideal gas, which would obey the equation of state p = nRT(1/V) and thus exhibit a pressure at constant deformation (1/V) likewise directly proportional to the temperature.


Sign in / Sign up

Export Citation Format

Share Document