scholarly journals Genetic Variation and Hot Flashes: A Systematic Review

2020 ◽  
Vol 105 (12) ◽  
pp. e4907-e4957
Author(s):  
Carolyn J Crandall ◽  
Allison L Diamant ◽  
Margaret Maglione ◽  
Rebecca C Thurston ◽  
Janet Sinsheimer

Abstract Context Approximately 70% of women report experiencing vasomotor symptoms (VMS, hot flashes and/or night sweats). The etiology of VMS is not clearly understood but may include genetic factors. Evidence Acquisition We searched PubMed and Embase in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidance. We included studies on associations between genetic variation and VMS. We excluded studies focused on medication interventions or prevention or treatment of breast cancer. Evidence Synthesis Of 202 unique citations, 18 citations met the inclusion criteria. Study sample sizes ranged from 51 to 17 695. Eleven of the 18 studies had fewer than 500 participants; 2 studies had 1000 or more. Overall, statistically significant associations with VMS were found for variants in 14 of the 26 genes assessed in candidate gene studies. The cytochrome P450 family 1 subfamily A member 1 (CYP1B1) gene was the focus of the largest number (n = 7) of studies, but strength and statistical significance of associations of CYP1B1 variants with VMS were inconsistent. A genome-wide association study reported statistically significant associations between 14 single-nucleotide variants in the tachykinin receptor 3 gene and VMS. Heterogeneity across trials regarding VMS measurement methods and effect measures precluded quantitative meta-analysis; there were few studies of each specific genetic variant. Conclusions Genetic variants are associated with VMS. The associations are not limited to variations in sex-steroid metabolism genes. However, studies were few and future studies are needed to confirm and extend these findings.

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1441
Author(s):  
Russell J. Buono ◽  
Jonathan P. Bradfield ◽  
Zhi Wei ◽  
Michael R. Sperling ◽  
Dennis J. Dlugos ◽  
...  

We performed a genome-wide association study (GWAS) to identify genetic variation associated with common forms of idiopathic generalized epilepsy (GE) and focal epilepsy (FE). Using a cohort of 2220 patients and 14,448 controls, we searched for single nucleotide polymorphisms (SNPs) associated with GE, FE and both forms combined. We did not find any SNPs that reached genome-wide statistical significance (p ≤ 5 × 10−8) when comparing all cases to all controls, and few SNPs of interest comparing FE cases to controls. However, we document multiple linked SNPs in the PADI6-PADI4 genes that reach genome-wide significance and are associated with disease when comparing GE cases alone to controls. PADI genes encode enzymes that deiminate arginine to citrulline in molecular pathways related to epigenetic regulation of histones and autoantibody formation. Although epilepsy genetics and treatment are focused strongly on ion channel and neurotransmitter mechanisms, these results suggest that epigenetic control of gene expression and the formation of autoantibodies may also play roles in epileptogenesis.


2016 ◽  
Vol 1 (2) ◽  
pp. 163-170 ◽  
Author(s):  
S. Zhang ◽  
K. Divaris ◽  
K. Moss ◽  
N. Yu ◽  
S. Barros ◽  
...  

An increasing body of evidence suggests a significant genetic regulation of inflammatory response mechanisms; however, little is known regarding the genetic determinants of severe gingival inflammation (GI). We conducted a genome-wide association study of severe GI among 4,077 European American adults, participants in the Dental Atherosclerosis Risk in Communities cohort. The severe GI trait was defined dichotomously with the 90th percentile of gingival index ≥2 extent score. Genotyping was performed with the Affymetrix 6.0 array platform, and an imputed set of 2.5 million markers, based on HapMap Phase II CEU build 36, was interrogated. Genetic models were based on logistic regression and controlled for ancestry (10 principal components), sex, age, and examination center. One locus on chromosome 17 met genome-wide statistical significance criteria—lead single-nucleotide polymorphism: rs11652874 (minor allele frequency = 0.06, intronic to ASIC2 [acid-sensing ionic channel 2, formerly named ACCN1]; odds ratio = 2.1, 95% confidence interval = 1.6 to 2.7, P = 3.9 × 10-8). This association persisted among subjects with severe periodontitis and was robust to adjustment for microbial plaque index. Moreover, the minor (G) allele was associated with higher levels of severe GI in stratified analyses among subsets of participants with high load of either “red” or “orange” complex pathogens, although this association was not statistically significant. While these results will require replication in independent samples and confirmation by mechanistic studies, this locus appears as a promising candidate for severe GI. Our findings suggest that genetic variation in ASIC2 is significantly associated with severe GI and that the association is plaque independent. Knowledge Transfer Statement: Persistent gingival inflammation reflected by bleeding usually precedes ongoing attachment loss or periodontal disease progression. Our findings suggest that genetic variation in ASIC2 that is associated with severe gingival inflammation might be used as a genetic marker to identify people at higher risk for periodontal disease. Ongoing studies to uncover the mechanistic link between ASIC2 and gingival inflammation could lead to novel therapeutic interventions.


2019 ◽  
Vol 5 (2) ◽  
pp. 00071-2019 ◽  
Author(s):  
Jose M. Lorenzo-Salazar ◽  
Shwu-Fan Ma ◽  
Jonathan Jou ◽  
Pei-Chi Hou ◽  
Beatriz Guillen-Guio ◽  
...  

BackgroundSpecific common and rare single nucleotide variants (SNVs) increase the likelihood of developing sporadic idiopathic pulmonary fibrosis (IPF). We performed target-enriched sequencing on three loci previously identified by a genome-wide association study to gain a deeper understanding of the full spectrum of IPF genetic risk and performed a two-stage case–control association study.MethodsA total of 1.7 Mb of DNA from 181 IPF patients was deep sequenced (>100×) across 11p15.5, 14q21.3 and 17q21.31 loci. Comparisons were performed against 501 unrelated controls and replication studies were assessed in 3968 subjects.Results36 SNVs were associated with IPF susceptibility in the discovery stage (p<5.0×10−8). After meta-analysis, the strongest association corresponded to rs35705950 (p=9.27×10−57) located upstream from the mucin 5B gene (MUC5B). Additionally, a novel association was found for two co-inherited low-frequency SNVs (<5%) in MUC5AC, predicting a missense amino acid change in mucin 5AC (lowest p=2.27×10−22). Conditional and haplotype analyses in 11p15.5 supported the existence of an additional contribution of MUC5AC variants to IPF risk.ConclusionsThis study reinforces the significant IPF associations of these loci and implicates MUC5AC as another key player in IPF susceptibility.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Martin Johnsson ◽  
Andrew Whalen ◽  
Roger Ros-Freixedes ◽  
Gregor Gorjanc ◽  
Ching-Yi Chen ◽  
...  

Abstract Background Meiotic recombination results in the exchange of genetic material between homologous chromosomes. Recombination rate varies between different parts of the genome, between individuals, and is influenced by genetics. In this paper, we assessed the genetic variation in recombination rate along the genome and between individuals in the pig using multilocus iterative peeling on 150,000 individuals across nine genotyped pedigrees. We used these data to estimate the heritability of recombination and perform a genome-wide association study of recombination in the pig. Results Our results confirmed known features of the recombination landscape of the pig genome, including differences in genetic length of chromosomes and marked sex differences. The recombination landscape was repeatable between lines, but at the same time, there were differences in average autosome-wide recombination rate between lines. The heritability of autosome-wide recombination rate was low but not zero (on average 0.07 for females and 0.05 for males). We found six genomic regions that are associated with recombination rate, among which five harbour known candidate genes involved in recombination: RNF212, SHOC1, SYCP2, MSH4 and HFM1. Conclusions Our results on the variation in recombination rate in the pig genome agree with those reported for other vertebrates, with a low but nonzero heritability, and the identification of a major quantitative trait locus for recombination rate that is homologous to that detected in several other species. This work also highlights the utility of using large-scale livestock data to understand biological processes.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Sara Coles ◽  
Stephanie Giamberardino ◽  
Carol Haynes ◽  
Ruicong She ◽  
Hongsheng Gui ◽  
...  

Background: Exercise has shown benefit in patients with systolic heart failure, including in the clinical trial Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training (HF-ACTION). There is heterogeneity in who derives benefit from exercise, and the biologic mechanisms of favorable response to exercise in systolic heart failure are not well understood. Hypothesis: Genetic variation is an underlying factor influencing heterogeneity in response to exercise in patients with systolic heart failure. Methods: The HF-ACTION trial randomized individuals with systolic heart failure (left ventricular ejection fraction <35%) to supervised exercise versus usual care. In this study, we performed a genome wide association study (GWAS) in the HF-ACTION biorepository using the Axiom Biobank1 genotyping array (13,403,591 single nucleotide polymorphisms [SNPs] after quality control on directly genotyped and 1000 genomes imputed data), in N=377 study subjects who completed the supervised exercise arm. Using change in peak VO2 as our outcome, we ran within-ancestry GWASes, modeling SNP effects as both additive and dominant, and conducted across-ancestry meta-analysis within each genetic model. Results: Five loci met genome-wide significance in the European ancestry analyses, 5 loci in the African ancestry, and 8 in the meta-analyses. The two most significantly associated loci across both additive and dominant meta-analysis models were rs111577308 located in the histone acetylation for transcription elongator complex 3 gene ( ELP3, p=1.212x10 -9 ) and rs75444785 located in the phosphodiesterase 4D gene ( PDE4D , p=1.565x10 -9 ). ELP3 is responsible for histone modifications related to DNA transcription factor complexes, and PDE4D is involved in cyclic AMP cell signaling. In silico analysis of these loci showed that they are in linkage with regions associated with skeletal muscle and peripheral vascular disease phenotypes. Conclusions: Using a genome-wide association study in a well-phenotyped clinical trial of exercise in systolic heart failure, we found common genetic variants in genes involved in DNA transcription histone modification and cyclic AMP cell signaling that are associated with a more favorable response to exercise.


2018 ◽  
Vol 214 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Chiara Fabbri ◽  
Siegfried Kasper ◽  
Alexander Kautzky ◽  
Lucie Bartova ◽  
Markus Dold ◽  
...  

BackgroundTreatment-resistant depression (TRD) is the most problematic outcome of depression in terms of functional impairment, suicidal thoughts and decline in physical health.AimsTo investigate the genetic predictors of TRD using a genome-wide approach to contribute to the development of precision medicine.MethodA sample recruited by the European Group for the Study of Resistant Depression (GSRD) including 1148 patients with major depressive disorder (MDD) was characterised for the occurrence of TRD (lack of response to at least two adequate antidepressant treatments) and genotyped using the Infinium PsychArray. Three clinically relevant patient groups were considered: TRD, responders and non-responders to the first antidepressant trial, thus outcomes were based on comparisons of these groups. Genetic analyses were performed at the variant, gene and gene-set (i.e. functionally related genes) level. Additive regression models of the outcomes and relevant covariates were used in the GSRD participants and in a fixed-effect meta-analysis performed between GSRD, STAR*D (n = 1316) and GENDEP (n = 761) participants.ResultsNo individual polymorphism or gene was associated with TRD, although some suggestive signals showed enrichment in cytoskeleton regulation, transcription modulation and calcium signalling. Two gene sets (GO:0043949 and GO:0000183) were associated with TRD versus response and TRD versus response and non-response to the first treatment in the GSRD participants and in the meta-analysis, respectively (corrected P = 0.030 and P = 0.027).ConclusionsThe identified gene sets are involved in cyclic adenosine monophosphate mediated signal and chromatin silencing, two processes previously implicated in antidepressant action. They represent possible biomarkers to implement personalised antidepressant treatments and targets for new antidepressants.Declaration of interestD.S. has received grant/research support from GlaxoSmithKline and Lundbeck; has served as a consultant or on advisory boards for AstraZeneca, Bristol-Myers Squibb, Eli Lilly, Janssen and Lundbeck. S.M. has been a consultant or served on advisory boards for: AstraZeneca, Bristol-Myers Squibb, Forest, Johnson & Johnson, Leo, Lundbeck, Medelink, Neurim, Pierre Fabre, Richter. S.K. has received grant/research support from Eli Lilly, Lundbeck, Bristol-Myers Squibb, GlaxoSmithKline, Organon, Sepracor and Servier; has served as a consultant or on advisory boards for AstraZeneca, Bristol-Myers Squibb, GlaxoSmithKline, Eli Lilly, Lundbeck, Pfizer, Organon, Schwabe, Sepracor, Servier, Janssen and Novartis; and has served on speakers' bureaus for AstraZeneca, Eli Lily, Lundbeck, Schwabe, Sepracor, Servier, Pierre Fabre, Janssen and Neuraxpharm. J.Z. has received grant/research support from Lundbeck, Servier, Brainsway and Pfizer, has served as a consultant or on advisory boards for Servier, Pfizer, Abbott, Lilly, Actelion, AstraZeneca and Roche and has served on speakers' bureaus for Lundbeck, Roch, Lilly, Servier, Pfizer and Abbott. J.M. is a member of the Board of the Lundbeck International Neuroscience Foundation and of Advisory Board of Servier. A.S. is or has been consultant/speaker for: Abbott, AbbVie, Angelini, Astra Zeneca, Clinical Data, Boehringer, Bristol Myers Squibb, Eli Lilly, GlaxoSmithKline, Innovapharma, Italfarmaco, Janssen, Lundbeck, Naurex, Pfizer, Polifarma, Sanofi and Servier. C.M.L. receives research support from RGA UK Services Limited.


2018 ◽  
Vol 60 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Yasmeen Niazi ◽  
Hauke Thomsen ◽  
Bozena Smolkova ◽  
Ludmila Vodickova ◽  
Sona Vodenkova ◽  
...  

2022 ◽  
Author(s):  
Astros Skuladottir ◽  
Gyda Bjornsdottir ◽  
Egil Ferkingstad ◽  
Gudmundur Einarsson ◽  
Lilja Stefansdottir ◽  
...  

Abstract Carpal tunnel syndrome (CTS) is the most common entrapment neuropathy and has a largely unknown underlying biology. In a genome-wide association study of CTS (Ncases = 48,843, Ncontrols = 1,190,837), we found 53 sequence variants at 50 loci that associate with the syndrome. The most significant association is with a missense variant (p.Glu366Lys) in SERPINA1 that protects against CTS (P = 2.9 × 10−24, OR = 0.76). Through various functional analyses, we conclude that at least 22 genes mediate CTS risk and highlight the role of 19 CTS variants in the biology of the extracellular matrix. We show that the genetic component to the risk is higher in recurrent/persistent cases than nonrecurrent/nonresistant cases. Anthropometric traits including height and BMI are genetically correlated with CTS, in addition to early hormonal-replacement therapy, osteoarthritis, and restlessness. Our findings suggest that the components of the extracellular matrix play a key role in the pathogenesis of CTS.


Sign in / Sign up

Export Citation Format

Share Document