scholarly journals Gene Expression Is Differentially Regulated in the Epididymis after Orchidectomy

Endocrinology ◽  
2003 ◽  
Vol 144 (3) ◽  
pp. 975-988 ◽  
Author(s):  
Nadine Ezer ◽  
Bernard Robaire

The epididymis is the site for the transport, maturation, and storage of spermatozoa. Regulation of epididymal structure and function is highly dependent on the ipsilateral testis. At the molecular level, however, few studies have been undertaken to determine which genes are expressed in the epididymis under testicular regulation. The goal of this study was to identify genes for which expression is regulated after orchidectomy, both throughout the epididymis and in a segment-specific manner. Microarrays spotted with 474 rat cDNAs were used to examine gene expression changes over the first 7 d post orchidectomy in the initial segment, caput, corpus, and cauda epididymidis of the adult Brown Norway rat. Using k-means cluster analysis, we show that four patterns of gene expression are activated in each epididymal segment over the first week following orchidectomy. Transient up-regulation of gene expression in the epididymis after orchidectomy is described for the first time. Potential androgen-repressed genes, including Gpx-1, show increased expression in the epididymis after orchidectomy. Several glutathione-S-transferases and calcium-binding proteins decline throughout the epididymis after orchidectomy, indicating that these may be novel androgen-regulated epididymal genes. Other genes coding for metabolism-associated proteins, transporters, and α-1 acid glycoprotein show segment-specific regulation in the epididymis after orchidectomy. Finally, we describe the expression of the previously uncharacterized heat shock proteins, and apoptosis-associated genes in the epididymis after orchidectomy. Thus, gene expression in the epididymis is differentially affected over time after orchidectomy. These results provide novel insight into androgen-dependent and segment-specific epididymal function.

Author(s):  
Thomas Griebel ◽  
Dmitry Lapin ◽  
Barbara Kracher ◽  
Lorenzo Concia ◽  
Moussa Benhamed ◽  
...  

AbstractTimely and specific regulation of gene expression is critical for plant responses to environmental and developmental cues. Transcriptional coregulators have emerged as important factors in gene expression control, although they lack DNA-binding domains and the mechanisms by which they are recruited to and function at the chromatin are poorly understood. Plant Topless-related 1 (TPR1), belonging to a family of transcriptional corepressors found across eukaryotes, contributes to immunity signaling in Arabidopsis thaliana and wild tobacco. We performed chromatin immunoprecipitation and sequencing (ChIP-seq) on an Arabidopsis TPR1-GFP expressing transgenic line to characterize genome-wide TPR1-chromatin associations. The analysis revealed ∼1400 genes bound by TPR1, with the majority of binding sites located at gene upstream regions. Among the TPR1 bound genes, we find not only regulators of immunity but also genes controlling growth and development. To support further analysis of TPR1-chromatin complexes and other transcriptional corepressors in plants, we provide two ways to access the processed ChIP-seq data and enable their broader use by the research community.


2021 ◽  
Author(s):  
Sara Artigas-Jerónimo ◽  
Margarita Villar ◽  
Agustín Estrada-Peña ◽  
Adrián Velázquez-Campoy ◽  
Pilar Alberdi ◽  
...  

The Akirin family of transcription cofactors are involved throughout the metazoan in the regulation of different biological processes such as immunity, interdigital regression, muscle and neural development. Akirin do not have catalytic or DNA-binding capability and exert its regulatory function primarily through interacting proteins such as transcription factors, chromatin remodelers, and RNA-associated proteins. In this study, we focused on the human Akirin2 regulome and interactome in neutrophil-like model human Caucasian promyelocytic leukemia HL60 cells. Our hypothesis is that metazoan evolved to have Akirin2 functional complements and different Akirin2-mediated mechanisms for the regulation of gene expression. To address this hypothesis, experiments were conducted using transcriptomics, proteomics and systems biology approaches in akirin2 knockdown and wildtype HL60 cells to characterize Akirin2 gene/protein targets, functional complements and to provide evidence of different mechanisms that may be involved in Akirin2-mediated regulation of gene expression. The results revealed Akirin2 gene/protein targets in multiple biological processes with higher representation of immunity and identified immune response genes as candidate Akirin2 functional complements. In addition to linking chromatin remodelers with transcriptional activation, Akirin2 also interacts with histone H3.1 for regulation of gene expression.


2020 ◽  
Vol 9 (4) ◽  
pp. 425-430
Author(s):  
Magnus Breitholtz ◽  
Pavel Ivanov ◽  
Karin Ek ◽  
Elena Gorokhova

Abstract To improve assessment of risks associated with pharmaceutical contamination of the environment, it is crucial to understand effects and mode of action of drugs in non-target species. The evidence is accumulating that species with well-conserved drug targets are prone to be at risk when exposed to pharmaceuticals. An interesting group of pharmaceuticals released into the environment is imidazoles, antifungal agents with inhibition of ergosterol synthesis as a primary mode of action in fungi. However, imidazoles have also been identified as competitive antagonists of calmodulin (CaM), a calcium-binding protein with phylogenetically conserved structure and function. Therefore, imidazoles would act as CaM inhibitors in various organisms, including those with limited capacity to synthesize sterols, such as arthropods. We hypothesized that effects observed in crustaceans exposed to imidazoles are related to the CaM inhibition and CaM-dependent nitric oxide (NO) synthesis. To test this hypothesis, we measured (i) CaM levels and its gene expression, (ii) NO accumulation and (iii) gene expression of NO synthase (NOS1 and NOS2), in the cladoceran Daphnia magna exposed to miconazole, a model imidazole drug. Whereas significantly increased CaM gene expression and its cellular allocation were observed, supporting the hypothesized mode of action, no changes occurred in either NO synthase expression or NO levels in the exposed animals. These findings suggest that CaM inhibition by miconazole leads to protein overexpression that compensates for the loss in the protein activity, with no measurable downstream effects on NO pathways. The inhibition of CaM in D. magna may have implications for effect assessment of exposure to mixtures of imidazoles in aquatic non-target species.


2018 ◽  
Vol 20 (1) ◽  
pp. 102 ◽  
Author(s):  
Justine Habibian ◽  
Bradley Ferguson

Approximately five million United States (U.S.) adults are diagnosed with heart failure (HF), with eight million U.S. adults projected to suffer from HF by 2030. With five-year mortality rates following HF diagnosis approximating 50%, novel therapeutic treatments are needed for HF patients. Pre-clinical animal models of HF have highlighted histone deacetylase (HDAC) inhibitors as efficacious therapeutics that can stop and potentially reverse cardiac remodeling and dysfunction linked with HF development. HDACs remove acetyl groups from nucleosomal histones, altering DNA-histone protein electrostatic interactions in the regulation of gene expression. However, HDACs also remove acetyl groups from non-histone proteins in various tissues. Changes in histone and non-histone protein acetylation plays a key role in protein structure and function that can alter other post translational modifications (PTMs), including protein phosphorylation. Protein phosphorylation is a well described PTM that is important for cardiac signal transduction, protein activity and gene expression, yet the functional role for acetylation-phosphorylation cross-talk in the myocardium remains less clear. This review will focus on the regulation and function for acetylation-phosphorylation cross-talk in the heart, with a focus on the role for HDACs and HDAC inhibitors as regulators of acetyl-phosphorylation cross-talk in the control of cardiac function.


2021 ◽  
Author(s):  
Anjani Kumari ◽  
Saam Sedehizadeh ◽  
John David Brook ◽  
Piotr Kozlowski ◽  
Marzena Wojciechowska

AbstractThe discovery of introns over four decades ago revealed a new vision of genes and their interrupted arrangement. Throughout the years, it has appeared that introns play essential roles in the regulation of gene expression. Unique processing of excised introns through the formation of lariats suggests a widespread role for these molecules in the structure and function of cells. In addition to rapid destruction, these lariats may linger on in the nucleus or may even be exported to the cytoplasm, where they remain stable circular RNAs (circRNAs). Alternative splicing (AS) is a source of diversity in mature transcripts harboring retained introns (RI-mRNAs). Such RNAs may contain one or more entire retained intron(s) (RIs), but they may also have intron fragments resulting from sequential excision of smaller subfragments via recursive splicing (RS), which is characteristic of long introns. There are many potential fates of RI-mRNAs, including their downregulation via nuclear and cytoplasmic surveillance systems and the generation of new protein isoforms with potentially different functions. Various reports have linked the presence of such unprocessed transcripts in mammals to important roles in normal development and in disease-related conditions. In certain human neurological-neuromuscular disorders, including myotonic dystrophy type 2 (DM2), frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS) and Duchenne muscular dystrophy (DMD), peculiar processing of long introns has been identified and is associated with their pathogenic effects. In this review, we discuss different mechanisms involved in the processing of introns during AS and the functions of these large sections of the genome in our biology.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009801
Author(s):  
Karl M. Glastad ◽  
Linyang Ju ◽  
Shelley L. Berger

A key question in the rising field of neuroepigenetics is how behavioral plasticity is established and maintained in the developing CNS of multicellular organisms. Behavior is controlled through systemic changes in hormonal signaling, cell-specific regulation of gene expression, and changes in neuronal connections in the nervous system, however the link between these pathways is unclear. In the ant Camponotus floridanus, the epigenetic corepressor CoREST is a central player in experimentally-induced reprogramming of caste-specific behavior, from soldier (Major worker) to forager (Minor worker). Here, we show this pathway is engaged naturally on a large genomic scale during late pupal development targeting multiple genes differentially expressed between castes, and central to this mechanism is the protein tramtrack (ttk), a DNA binding partner of CoREST. Caste-specific differences in DNA binding of ttk co-binding with CoREST correlate with caste-biased gene expression both in the late pupal stage and immediately after eclosion. However, we find a unique set of exclusive Minor-bound genes that show ttk pre-binding in the late pupal stage preceding CoREST binding, followed by caste-specific gene repression on the first day of eclosion. In addition, we show that ttk binding correlates with neurogenic Notch signaling, and that specific ttk binding between castes is enriched for regulatory sites associated with hormonal function. Overall our findings elucidate a pathway of transcription factor binding leading to a repressive epigenetic axis that lies at the crux of development and hormonal signaling to define worker caste identity in C. floridanus.


2021 ◽  
Vol 41 (7) ◽  
Author(s):  
Sara Artigas-Jerónimo ◽  
Margarita Villar ◽  
Agustín Estrada-Peña ◽  
Adrián Velázquez-Campoy ◽  
Pilar Alberdi ◽  
...  

Abstract The Akirin family of transcription cofactors are involved throughout the metazoan in the regulation of different biological processes (BPs) such as immunity, interdigital regression, muscle and neural development. Akirin do not have catalytic or DNA-binding capability and exert its regulatory function primarily through interacting proteins such as transcription factors, chromatin remodelers, and RNA-associated proteins. In the present study, we focused on the human Akirin2 regulome and interactome in neutrophil-like model human Caucasian promyelocytic leukemia HL60 cells. Our hypothesis is that metazoan evolved to have Akirin2 functional complements and different Akirin2-mediated mechanisms for the regulation of gene expression. To address this hypothesis, experiments were conducted using transcriptomics, proteomics and systems biology approaches in akirin2 knockdown and wildtype (WT) HL60 cells to characterize Akirin2 gene/protein targets, functional complements and to provide evidence of different mechanisms that may be involved in Akirin2-mediated regulation of gene expression. The results revealed Akirin2 gene/protein targets in multiple BPs with higher representation of immunity and identified immune response genes as candidate Akirin2 functional complements. In addition to linking chromatin remodelers with transcriptional activation, Akirin2 also interacts with histone H3.1 for regulation of gene expression.


Sign in / Sign up

Export Citation Format

Share Document