scholarly journals The Crosstalk between Acetylation and Phosphorylation: Emerging New Roles for HDAC Inhibitors in the Heart

2018 ◽  
Vol 20 (1) ◽  
pp. 102 ◽  
Author(s):  
Justine Habibian ◽  
Bradley Ferguson

Approximately five million United States (U.S.) adults are diagnosed with heart failure (HF), with eight million U.S. adults projected to suffer from HF by 2030. With five-year mortality rates following HF diagnosis approximating 50%, novel therapeutic treatments are needed for HF patients. Pre-clinical animal models of HF have highlighted histone deacetylase (HDAC) inhibitors as efficacious therapeutics that can stop and potentially reverse cardiac remodeling and dysfunction linked with HF development. HDACs remove acetyl groups from nucleosomal histones, altering DNA-histone protein electrostatic interactions in the regulation of gene expression. However, HDACs also remove acetyl groups from non-histone proteins in various tissues. Changes in histone and non-histone protein acetylation plays a key role in protein structure and function that can alter other post translational modifications (PTMs), including protein phosphorylation. Protein phosphorylation is a well described PTM that is important for cardiac signal transduction, protein activity and gene expression, yet the functional role for acetylation-phosphorylation cross-talk in the myocardium remains less clear. This review will focus on the regulation and function for acetylation-phosphorylation cross-talk in the heart, with a focus on the role for HDACs and HDAC inhibitors as regulators of acetyl-phosphorylation cross-talk in the control of cardiac function.

2021 ◽  
Vol 7 (8) ◽  
pp. 624
Author(s):  
Ulises Carrasco-Navarro ◽  
Jesús Aguirre

Reactive oxygen species (ROS) regulate several aspects of cell physiology in filamentous fungi including the antioxidant response and development. However, little is known about the signaling pathways involved in these processes. Here, we report Aspergillus nidulans global phosphoproteome during mycelial growth and show that under these conditions, H2O2 induces major changes in protein phosphorylation. Among the 1964 phosphoproteins we identified, H2O2 induced the phosphorylation of 131 proteins at one or more sites as well as the dephosphorylation of a larger set of proteins. A detailed analysis of these phosphoproteins shows that H2O2 affected the phosphorylation of critical regulatory nodes of phosphoinositide, MAPK, and TOR signaling as well as the phosphorylation of multiple proteins involved in the regulation of gene expression, primary and secondary metabolism, and development. Our results provide a novel and extensive protein phosphorylation landscape in A. nidulans, indicating that H2O2 induces a shift in general metabolism from anabolic to catabolic, and the activation of multiple stress survival pathways. Our results expand the significance of H2O2 in eukaryotic cell signaling.


Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1120 ◽  
Author(s):  
Levi Evans ◽  
Bradley Ferguson

Approximately 5.7 million U.S. adults have been diagnosed with heart failure (HF). More concerning is that one in nine U.S. deaths included HF as a contributing cause. Current HF drugs (e.g., β-blockers, ACEi) target intracellular signaling cascades downstream of cell surface receptors to prevent cardiac pump dysfunction. However, these drugs fail to target other redundant intracellular signaling pathways and, therefore, limit drug efficacy. As such, it has been postulated that compounds designed to target shared downstream mediators of these signaling pathways would be more efficacious for the treatment of HF. Histone deacetylation has been linked as a key pathogenetic element for the development of HF. Lysine residues undergo diverse and reversible post-translational modifications that include acetylation and have historically been studied as epigenetic modifiers of histone tails within chromatin that provide an important mechanism for regulating gene expression. Of recent, bioactive compounds within our diet have been linked to the regulation of gene expression, in part, through regulation of the epi-genome. It has been reported that food bioactives regulate histone acetylation via direct regulation of writer (histone acetyl transferases, HATs) and eraser (histone deacetylases, HDACs) proteins. Therefore, bioactive food compounds offer unique therapeutic strategies as epigenetic modifiers of heart failure. This review will highlight food bio-actives as modifiers of histone deacetylase activity in the heart.


2020 ◽  
Vol 9 (4) ◽  
pp. 425-430
Author(s):  
Magnus Breitholtz ◽  
Pavel Ivanov ◽  
Karin Ek ◽  
Elena Gorokhova

Abstract To improve assessment of risks associated with pharmaceutical contamination of the environment, it is crucial to understand effects and mode of action of drugs in non-target species. The evidence is accumulating that species with well-conserved drug targets are prone to be at risk when exposed to pharmaceuticals. An interesting group of pharmaceuticals released into the environment is imidazoles, antifungal agents with inhibition of ergosterol synthesis as a primary mode of action in fungi. However, imidazoles have also been identified as competitive antagonists of calmodulin (CaM), a calcium-binding protein with phylogenetically conserved structure and function. Therefore, imidazoles would act as CaM inhibitors in various organisms, including those with limited capacity to synthesize sterols, such as arthropods. We hypothesized that effects observed in crustaceans exposed to imidazoles are related to the CaM inhibition and CaM-dependent nitric oxide (NO) synthesis. To test this hypothesis, we measured (i) CaM levels and its gene expression, (ii) NO accumulation and (iii) gene expression of NO synthase (NOS1 and NOS2), in the cladoceran Daphnia magna exposed to miconazole, a model imidazole drug. Whereas significantly increased CaM gene expression and its cellular allocation were observed, supporting the hypothesized mode of action, no changes occurred in either NO synthase expression or NO levels in the exposed animals. These findings suggest that CaM inhibition by miconazole leads to protein overexpression that compensates for the loss in the protein activity, with no measurable downstream effects on NO pathways. The inhibition of CaM in D. magna may have implications for effect assessment of exposure to mixtures of imidazoles in aquatic non-target species.


2021 ◽  
Author(s):  
Anjani Kumari ◽  
Saam Sedehizadeh ◽  
John David Brook ◽  
Piotr Kozlowski ◽  
Marzena Wojciechowska

AbstractThe discovery of introns over four decades ago revealed a new vision of genes and their interrupted arrangement. Throughout the years, it has appeared that introns play essential roles in the regulation of gene expression. Unique processing of excised introns through the formation of lariats suggests a widespread role for these molecules in the structure and function of cells. In addition to rapid destruction, these lariats may linger on in the nucleus or may even be exported to the cytoplasm, where they remain stable circular RNAs (circRNAs). Alternative splicing (AS) is a source of diversity in mature transcripts harboring retained introns (RI-mRNAs). Such RNAs may contain one or more entire retained intron(s) (RIs), but they may also have intron fragments resulting from sequential excision of smaller subfragments via recursive splicing (RS), which is characteristic of long introns. There are many potential fates of RI-mRNAs, including their downregulation via nuclear and cytoplasmic surveillance systems and the generation of new protein isoforms with potentially different functions. Various reports have linked the presence of such unprocessed transcripts in mammals to important roles in normal development and in disease-related conditions. In certain human neurological-neuromuscular disorders, including myotonic dystrophy type 2 (DM2), frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS) and Duchenne muscular dystrophy (DMD), peculiar processing of long introns has been identified and is associated with their pathogenic effects. In this review, we discuss different mechanisms involved in the processing of introns during AS and the functions of these large sections of the genome in our biology.


Endocrinology ◽  
2012 ◽  
Vol 153 (6) ◽  
pp. 2919-2928 ◽  
Author(s):  
Arturo Hernandez ◽  
Beatriz Morte ◽  
Mónica M. Belinchón ◽  
Ainhoa Ceballos ◽  
Juan Bernal

Thyroid hormones regulate brain development and function through the control of gene expression, mediated by binding of T3 to nuclear receptors. Brain T3 concentration is tightly controlled by homeostatic mechanisms regulating transport and metabolism of T4 and T3. We have examined the role of the inactivating enzyme type 3 deiodinase (D3) in the regulation of 43 thyroid hormone-dependent genes in the cerebral cortex of 30-d-old mice. D3 inactivation increased slightly the expression of two of 22 positively regulated genes and significantly decreased the expression of seven of 21 negatively regulated genes. Administration of high doses of T3 led to significant changes in the expression of 12 positive genes and three negative genes in wild-type mice. The response to T3 treatment was enhanced in D3-deficient mice, both in the number of genes and in the amplitude of the response, demonstrating the role of D3 in modulating T3 action. Comparison of the effects on gene expression observed in D3 deficiency with those in hypothyroidism, hyperthyroidism, and type 2 deiodinase (D2) deficiency revealed that the negative genes are more sensitive to D2 and D3 deficiencies than the positive genes. This observation indicates that, in normal physiological conditions, D2 and D3 play critical roles in maintaining local T3 concentrations within a very narrow range. It also suggests that negatively and positively regulated genes do not have the same physiological significance or that their regulation by thyroid hormone obeys different paradigms at the molecular or cellular levels.


2020 ◽  
Vol 26 (40) ◽  
pp. 7212-7280 ◽  
Author(s):  
Faria Sultana ◽  
Kesari Lakshmi Manasa ◽  
Siddiq Pasha Shaik ◽  
Srinivasa Reddy Bonam ◽  
Ahmed Kamal

Background: Histone deacetylases (HDAC) are an important class of enzymes that play a pivotal role in epigenetic regulation of gene expression that modifies the terminal of core histones leading to remodelling of chromatin topology and thereby controlling gene expression. HDAC inhibitors (HDACi) counter this action and can result in hyperacetylation of histones, thereby inducing an array of cellular consequences such as activation of apoptotic pathways, generation of reactive oxygen species (ROS), cell cycle arrest and autophagy. Hence, there is a growing interest in the potential clinical use of HDAC inhibitors as a new class of targeted cancer therapeutics. Methodology and Result: Several research articles spanning between 2016 and 2017 were reviewed in this article and presently offer critical insights into the important strategies such as structure-based rational drug design, multi-parameter lead optimization methodologies, relevant SAR studies and biology of various class of HDAC inhibitors, such as hydroxamic acids, benzamides, cyclic peptides, aliphatic acids, summarising the clinical trials and results of various combination drug therapy till date. Conclusion: This review will provide a platform to the synthetic chemists and biologists to cater the needs of both molecular targeted therapy and combination drug therapy to design and synthesize safe and selective HDAC inhibitors in cancer therapeutics.


mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
Keely A. Dulmage ◽  
Horia Todor ◽  
Amy K. Schmid

ABSTRACTIn all three domains of life, organisms use nonspecific DNA-binding proteins to compact and organize the genome as well as to regulate transcription on a global scale. Histone is the primary eukaryotic nucleoprotein, and its evolutionary roots can be traced to the archaea. However, not all archaea use this protein as the primary DNA-packaging component, raising questions regarding the role of histones in archaeal chromatin function. Here, quantitative phenotyping, transcriptomic, and proteomic assays were performed on deletion and overexpression mutants of the sole histone protein of the hypersaline-adapted haloarchaeal model organismHalobacterium salinarum. This protein is highly conserved among all sequenced haloarchaeal species and maintains hallmark residues required for eukaryotic histone functions. Surprisingly, despite this conservation at the sequence level, unlike in other archaea or eukaryotes,H. salinarumhistone is required to regulate cell shape but is not necessary for survival. Genome-wide expression changes in histone deletion strains were global, significant but subtle in terms of fold change, bidirectional, and growth phase dependent. Mass spectrometric proteomic identification of proteins from chromatin enrichments yielded levels of histone and putative nucleoid-associated proteins similar to those of transcription factors, consistent with an open and transcriptionally active genome. Taken together, these data suggest that histone inH. salinarumplays a minor role in DNA compaction but important roles in growth-phase-dependent gene expression and regulation of cell shape. Histone function in haloarchaea more closely resembles a regulator of gene expression than a chromatin-organizing protein like canonical eukaryotic histone.IMPORTANCEHistones comprise the major protein component of eukaryotic chromatin and are required for both genome packaging and global regulation of expression. The current paradigm maintains that archaea whose genes encode histone also use these proteins to package DNA. In contrast, here we demonstrate that the sole histone encoded in the genome of the salt-adapted archaeonHalobacterium salinarumis both unessential and unlikely to be involved in DNA compaction despite conservation of residues important for eukaryotic histones. Rather,H. salinarumhistone is required for global regulation of gene expression and cell shape. These data are consistent with the hypothesis thatH. salinarumhistone, strongly conserved across all other known salt-adapted archaea, serves a novel role in gene regulation and cell shape maintenance. Given that archaea possess the ancestral form of eukaryotic histone, this study has important implications for understanding the evolution of histone function.


Endocrinology ◽  
2003 ◽  
Vol 144 (3) ◽  
pp. 975-988 ◽  
Author(s):  
Nadine Ezer ◽  
Bernard Robaire

The epididymis is the site for the transport, maturation, and storage of spermatozoa. Regulation of epididymal structure and function is highly dependent on the ipsilateral testis. At the molecular level, however, few studies have been undertaken to determine which genes are expressed in the epididymis under testicular regulation. The goal of this study was to identify genes for which expression is regulated after orchidectomy, both throughout the epididymis and in a segment-specific manner. Microarrays spotted with 474 rat cDNAs were used to examine gene expression changes over the first 7 d post orchidectomy in the initial segment, caput, corpus, and cauda epididymidis of the adult Brown Norway rat. Using k-means cluster analysis, we show that four patterns of gene expression are activated in each epididymal segment over the first week following orchidectomy. Transient up-regulation of gene expression in the epididymis after orchidectomy is described for the first time. Potential androgen-repressed genes, including Gpx-1, show increased expression in the epididymis after orchidectomy. Several glutathione-S-transferases and calcium-binding proteins decline throughout the epididymis after orchidectomy, indicating that these may be novel androgen-regulated epididymal genes. Other genes coding for metabolism-associated proteins, transporters, and α-1 acid glycoprotein show segment-specific regulation in the epididymis after orchidectomy. Finally, we describe the expression of the previously uncharacterized heat shock proteins, and apoptosis-associated genes in the epididymis after orchidectomy. Thus, gene expression in the epididymis is differentially affected over time after orchidectomy. These results provide novel insight into androgen-dependent and segment-specific epididymal function.


Sign in / Sign up

Export Citation Format

Share Document