scholarly journals The Low-Density Lipoprotein Receptor Is Regulated by Estrogen and Forms a Functional Complex with the Estrogen-Regulated Protein Ezrin in Pituitary GH3 Somatolactotropes

Endocrinology ◽  
2004 ◽  
Vol 145 (7) ◽  
pp. 3075-3083 ◽  
Author(s):  
Perry M. Smith ◽  
Ann Cowan ◽  
Bruce A. White

Abstract Estrogen regulates the function, growth, and proliferation of lactotropes in the pituitary. We report here that low-density lipoprotein (LDL) receptor (LDLR) gene expression and LDL uptake are strongly up-regulated by estrogen in pituitary somatolactotropic GH3 cells. The uptake of LDL was significantly inhibited by the F-actin-severing drug, swinholide A, indicating that LDL uptake is dependent on the integrity of the cortical actin cytoskeleton in GH3 cells. We examined whether the estrogen-inducible cytoskeletal linker protein, ezrin, interacts with the LDLR. The LDLR coimmunoprecipitated with ezrin, and fluorescently labeled LDL bound to regions of the cell membrane that colocalized with the active, phosphorylated form of ezrin (phosphoezrin). Evidence for a functional interaction between ezrin and the LDLR was obtained by transient transfection experiments using ezrin-green fluorescent protein (GFP) expression constructs. We observed that transient transfection of GH3 cells with an ezrin N terminus-GFP dominant-negative construct prevented the uptake of LDL particles, whereas expression of GFP alone or an ezrin C terminus-GFP construct had no effect on LDL uptake. Transfection with the ezrin N terminus dominant- negative construct had no effect on the endocytosis of transferrin. Thus, estrogen stimulates the expression of ezrin and the LDLR in GH3 cells, which interact physically and functionally to facilitate the endocytosis of LDL. We propose that the up-regulation and interaction of ezrin and the LDLR serves to augment the delivery of cholesterol and other lipids in support of the hypertrophic and proliferative response of cells to estrogen.

Author(s):  
Dean A. Handley ◽  
Cynthia M. Arbeeny ◽  
Larry D. Witte

Low density lipoproteins (LDL) are the major cholesterol carrying particles in the blood. Using cultured cells, it has been shown that LDL particles interact with specific surface receptors and are internalized via a coated pit-coated vesicle pathway for lysosomal catabolism. This (Pathway has been visualized using LDL labeled to ferritin or colloidal gold. It is now recognized that certain lysomotropic agents, such as chloroquine, inhibit lysosomal enzymes that degrade protein and cholesterol esters. By interrupting cholesterol ester hydrolysis, chloroquine treatment results in lysosomal accumulation of cholesterol esters from internalized LDL. Using LDL conjugated to colloidal gold, we have examined the ultrastructural effects of chloroquine on lipoprotein uptake by normal cultured fibroblasts.


2021 ◽  
Vol 10 (8) ◽  
pp. 1769
Author(s):  
Katariina Öörni ◽  
Petri T. Kovanen

Circulating low-density lipoprotein (LDL) particles enter the arterial intima where they bind to the extracellular matrix and become modified by lipases, proteases, and oxidizing enzymes and agents. The modified LDL particles aggregate and fuse into larger matrix-bound lipid droplets and, upon generation of unesterified cholesterol, cholesterol crystals are also formed. Uptake of the aggregated/fused particles and cholesterol crystals by macrophages and smooth muscle cells induces their inflammatory activation and conversion into foam cells. In this review, we summarize the causes and consequences of LDL aggregation and describe the development and applications of an assay capable of determining the susceptibility of isolated LDL particles to aggregate when exposed to human recombinant sphingomyelinase enzyme ex vivo. Significant person-to-person differences in the aggregation susceptibility of LDL particles were observed, and such individual differences largely depended on particle lipid composition. The presence of aggregation-prone LDL in the circulation predicted future cardiovascular events in patients with atherosclerotic cardiovascular disease. We also discuss means capable of reducing LDL particles’ aggregation susceptibility that could potentially inhibit LDL aggregation in the arterial wall. Whether reductions in LDL aggregation susceptibility are associated with attenuated atherogenesis and a reduced risk of atherosclerotic cardiovascular diseases remains to be studied.


Author(s):  
Franziska Grundler ◽  
Dietmar Plonné ◽  
Robin Mesnage ◽  
Diethard Müller ◽  
Cesare R. Sirtori ◽  
...  

Abstract Purpose Dyslipidemia is a major health concern associated with an increased risk of cardiovascular mortality. Long-term fasting (LF) has been shown to improve plasma lipid profile. We performed an in-depth investigation of lipoprotein composition. Methods This observational study included 40 volunteers (50% men, aged 32–65 years), who underwent a medically supervised fast of 14 days (250 kcal/day). Changes in lipid and lipoprotein levels, as well as in lipoprotein subclasses and particles, were measured by ultracentrifugation and nuclear magnetic resonance (NMR) at baseline, and after 7 and 14 fasting days. Results The largest changes were found after 14 fasting days. There were significant reductions in triglycerides (TG, − 0.35 ± 0.1 mmol/L), very low-density lipoprotein (VLDL)-TG (− 0.46 ± 0.08 mmol/L), VLDL-cholesterol (VLDL-C, − 0.16 ± 0.03 mmol/L) and low-density lipoprotein (LDL)-C (− 0.72 ± 0.14 mmol/L). Analysis of LDL subclasses showed a significant decrease in LDL1-C (− 0.16 ± 0.05 mmol/L), LDL2-C (− 0.30 ± 0.06 mmol/L) and LDL3-C (− 0.27 ± 0.05 mmol/L). NMR spectroscopy showed a significant reduction in large VLDL particles (− 5.18 ± 1.26 nmol/L), as well as large (− 244.13 ± 39.45 nmol/L) and small LDL particles (− 38.45 ± 44.04 nmol/L). A significant decrease in high-density lipoprotein (HDL)-C (− 0.16 ± 0.04 mmol/L) was observed. By contrast, the concentration in large HDL particles was significantly raised. Apolipoprotein A1 decreased significantly whereas apolipoprotein B, lipoprotein(a), fibrinogen and high-sensitivity C-reactive protein were unchanged. Conclusion Our results suggest that LF improves lipoprotein levels and lipoprotein subclasses and ameliorates the lipoprotein-associated atherogenic risk profile, suggesting a reduction in the cardiovascular risk linked to dyslipidemia. Trial Registration Study registration number: DRKS-ID: DRKS00010111 Date of registration: 03/06/2016 “retrospectively registered”.


2020 ◽  
Author(s):  
Keisuke Sugimoto ◽  
Kohei Miyazaki ◽  
Takuji Enya ◽  
Tomoki Miyazawa ◽  
Yuichi Morimoto ◽  
...  

Abstract Background: Hyperlipidemia is an important characteristic feature of idiopathic nephrotic syndrome (NS) in children. This study was conducted to examine the lipid profiles, including small dense low-density lipoprotein (sdLDL-C), in childhood-onset NS.Methods: This retrospective study enrolled patients diagnosed with initial-onset NS in childhood and adolescence. Study parameters included lipid profiles. The “alternative LDL window” comprises the number and sizes of LDL particles estimated according to non-HDL-C and TG levels.Results: A total of 39 patients were enrolled who exhibited markedly increased lipid abnormalities, including TC, TG, LDL-C, and non-HDL-C levels (TC, 409.7 TC, TG, and sizes of LDL particles estimated as non-HDL-C, 332.3). Of the 39 patients, 32 (82%) were categorized in the area of hyper-TG/-non-HDL levels, which is considered as sdLDL. A positive correlation was found between non-HDL-C and TC (r = 0.96, P < 0.001), TG (r = 0.38, P = 0.018), LDL-C (r = 0.84, P < 0.001), TC/HDL (r = 0.53, P < 0.001), and atherogenic index of plasma (r = 0.42, P = 0.008).Conclusions: Our study demonstrated markedly increased lipid profiles during the acute phase of NS. Evaluation of lipid profiles using the “alternative LDL window” may help understand the state of hyperlipidemia in NS.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Shayan Mohammadmoradi ◽  
Aida Javidan ◽  
Weihua Jiang ◽  
Jessica Moorleghen ◽  
Venkateswaran Subramanian

Background and Objective: Mimetic mediated activation of microRNA 146a (miR-146a) reduces atherosclerosis via suppression of nuclear factor-κB-driven inflammation in mice. The purpose of this study was to determine whether miR-146a influences plasma cholesterol in hypercholesterolemic mice. Methods and Results: To induce hypercholesterolemia, female C57BL/6 miR-146a WT (n=8) and miR-146a KO (n=8) mice were injected intraperitoneally with an adeno-associated viral vector (AAV) expressing the proprotein convertase subtilisin/kexin type 9 (PSCK9 D377Y) gain-of-function mutant at a dose of 3 x 10 10 genomic copies/mouse. After infection, mice were fed a Western diet (21% wt/wt milk fat; 0.15% wt/wt cholesterol) for sixteen weeks, and plasma PCSK9 and total cholesterol concentrations were monitored monthly using an enzymatic assay. Plasma PCSK9 concentrations were profoundly increased 4 weeks post injection (Baseline: WT - 179 ± 12 vs KO - 207 ± 12; Week 4: WT - 1700 ± 148 vs KO - 2689 ± 305 ng/ml) and remained significantly high during 16 weeks (WT - 882 ± 142 vs KO - 718 ± 109 ng/ml; p<0.05 vs baseline) of Western diet feeding. Consistent with increased plasma PCSK9 concentrations, plasma cholesterol concentrations were increased in both groups of mice. Interestingly, miR-146a KO group mice showed less significant increase in plasma cholesterol compared to WT group (Baseline: WT - 88 ± 3 vs KO - 83 ± 3; Week 4: WT - 328 ± 25 vs KO - 195 ± 18 mg/dl) irrespective of the comparable plasma PCSK9 concentrations. Also, lipoprotein distribution analysis with size exclusion gel chromatography revealed that miR-146a KO mice showed a strong reduction in high density lipoprotein (HDL) particles while very low density lipoprotein (VLDL) and low density lipoprotein (LDL) particles were not affected. Conclusion: Our findings suggests that miR146a plays a critical role in the regulation of HDL particles in PCSK9 gain-of-function mutant-induced hypercholesterolemia in mice. Future studies will identify gene targets influenced by miR-146a in regulating HDL-cholesterol in hypercholesterolemic mice.


Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4140 ◽  
Author(s):  
Lili Gu ◽  
Yaqin Gong ◽  
Cheng Zhao ◽  
Yue Wang ◽  
Qinghua Tian ◽  
...  

Statins are the most popular therapeutic drugs to lower plasma low density lipoprotein cholesterol (LDL-C) synthesis by competitively inhibiting hydroxyl-3-methyl-glutaryl-CoA (HMG-CoA) reductase and up-regulating the hepatic low density lipoprotein receptor (LDLR). However, the concomitant up-regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9) by statin attenuates its cholesterol lowering efficacy. Lunasin, a soybean derived 43-amino acid polypeptide, has been previously shown to functionally enhance LDL uptake via down-regulating PCSK9 and up-regulating LDLR in hepatocytes and mice. Herein, we investigated the LDL-C lowering efficacy of simvastatin combined with lunasin. In HepG2 cells, after co-treatment with 1 μM simvastatin and 5 μM lunasin for 24 h, the up-regulation of PCSK9 by simvastatin was effectively counteracted by lunasin via down-regulating hepatocyte nuclear factor 1α (HNF-1α), and the functional LDL uptake was additively enhanced. Additionally, after combined therapy with simvastatin and lunasin for four weeks, ApoE−/− mice had significantly lower PCSK9 and higher LDLR levels in hepatic tissues and remarkably reduced plasma concentrations of total cholesterol (TC) and LDL-C, as compared to each monotherapy. Conclusively, lunasin significantly improved the LDL-C lowering efficacy of simvastatin by counteracting simvastatin induced elevation of PCSK9 in hepatocytes and ApoE−/− mice. Simvastatin combined with lunasin could be a novel regimen for hypercholesterolemia treatment.


2011 ◽  
Vol 287 (2) ◽  
pp. 1335-1344 ◽  
Author(s):  
Zhi-jia Ye ◽  
Gwang-Woong Go ◽  
Rajvir Singh ◽  
Wenzhong Liu ◽  
Ali Reza Keramati ◽  
...  

2008 ◽  
Vol 6 (3) ◽  
pp. 359-362 ◽  
Author(s):  
Xinjian Feng ◽  
Somnath C. Roy ◽  
Gopal K. Mor ◽  
Craig A. Grimes

Sign in / Sign up

Export Citation Format

Share Document